Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -479,32 +479,6 @@ object DataSourceWriteOptions {
+ "Use this when you are in the process of migrating from "
+ "com.uber.hoodie to org.apache.hudi. Stop using this after you migrated the table definition to org.apache.hudi input format")

// spark data source write pool name. Incase of streaming sink, users might be interested to set custom scheduling configs
// for regular writes and async compaction. In such cases, this pool name will be used for spark datasource writes.
val SPARK_DATASOURCE_WRITER_POOL_NAME = "sparkdatasourcewrite"

/*
When async compaction is enabled (deltastreamer or streaming sink), users might be interested to set custom
scheduling configs for regular writes and async compaction. This is the property used to set custom scheduler config
file with spark. In Deltastreamer, the file is generated within hudi and set if necessary. Where as in case of streaming
sink, users have to set this property when they invoke spark shell.
Sample format of the file contents.
<?xml version="1.0"?>
<allocations>
<pool name="sparkdatasourcewrite">
<schedulingMode>FAIR</schedulingMode>
<weight>4</weight>
<minShare>2</minShare>
</pool>
<pool name="hoodiecompact">
<schedulingMode>FAIR</schedulingMode>
<weight>3</weight>
<minShare>1</minShare>
</pool>
</allocations>
*/
val SPARK_SCHEDULER_ALLOCATION_FILE_KEY = "spark.scheduler.allocation.file"

/** @deprecated Use {@link HIVE_SYNC_MODE} instead of this config from 0.9.0 */
@Deprecated
val HIVE_USE_JDBC: ConfigProperty[String] = ConfigProperty
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -124,8 +124,8 @@ object HoodieSparkSqlWriter {

val jsc = new JavaSparkContext(sparkContext)
if (asyncCompactionTriggerFn.isDefined) {
if (jsc.getConf.getOption(DataSourceWriteOptions.SPARK_SCHEDULER_ALLOCATION_FILE_KEY).isDefined) {
jsc.setLocalProperty("spark.scheduler.pool", DataSourceWriteOptions.SPARK_DATASOURCE_WRITER_POOL_NAME)
if (jsc.getConf.getOption(SparkConfigs.SPARK_SCHEDULER_ALLOCATION_FILE_KEY).isDefined) {
jsc.setLocalProperty("spark.scheduler.pool", SparkConfigs.SPARK_DATASOURCE_WRITER_POOL_NAME)
}
}
val instantTime = HoodieActiveTimeline.createNewInstantTime()
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

package org.apache.hudi

object SparkConfigs {

// spark data source write pool name. Incase of streaming sink, users might be interested to set custom scheduling configs
// for regular writes and async compaction. In such cases, this pool name will be used for spark datasource writes.
val SPARK_DATASOURCE_WRITER_POOL_NAME = "sparkdatasourcewrite"

/*
When async compaction is enabled (deltastreamer or streaming sink), users might be interested to set custom
scheduling configs for regular writes and async compaction. This is the property used to set custom scheduler config
file with spark. In Deltastreamer, the file is generated within hudi and set if necessary. Where as in case of streaming
sink, users have to set this property when they invoke spark shell.
Sample format of the file contents.
<?xml version="1.0"?>
<allocations>
<pool name="sparkdatasourcewrite">
<schedulingMode>FAIR</schedulingMode>
<weight>4</weight>
<minShare>2</minShare>
</pool>
<pool name="hoodiecompact">
<schedulingMode>FAIR</schedulingMode>
<weight>3</weight>
<minShare>1</minShare>
</pool>
</allocations>
*/
val SPARK_SCHEDULER_ALLOCATION_FILE_KEY = "spark.scheduler.allocation.file"

}
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@

package org.apache.hudi.utilities.deltastreamer;

import org.apache.hudi.DataSourceWriteOptions;
import org.apache.hudi.SparkConfigs;
import org.apache.hudi.async.AsyncCompactService;
import org.apache.hudi.common.model.HoodieTableType;
import org.apache.hudi.common.util.Option;
Expand Down Expand Up @@ -85,7 +85,7 @@ public static Map<String, String> getSparkSchedulingConfigs(HoodieDeltaStreamer.
&& cfg.continuousMode && cfg.tableType.equals(HoodieTableType.MERGE_ON_READ.name())) {
String sparkSchedulingConfFile = generateAndStoreConfig(cfg.deltaSyncSchedulingWeight,
cfg.compactSchedulingWeight, cfg.deltaSyncSchedulingMinShare, cfg.compactSchedulingMinShare);
additionalSparkConfigs.put(DataSourceWriteOptions.SPARK_SCHEDULER_ALLOCATION_FILE_KEY(), sparkSchedulingConfFile);
additionalSparkConfigs.put(SparkConfigs.SPARK_SCHEDULER_ALLOCATION_FILE_KEY(), sparkSchedulingConfFile);
} else {
LOG.warn("Job Scheduling Configs will not be in effect as spark.scheduler.mode "
+ "is not set to FAIR at instantiation time. Continuing without scheduling configs");
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@

package org.apache.hudi.utilities.deltastreamer;

import org.apache.hudi.DataSourceWriteOptions;
import org.apache.hudi.SparkConfigs;
import org.apache.hudi.common.model.HoodieTableType;

import org.junit.jupiter.api.Test;
Expand All @@ -34,21 +34,21 @@ public class TestSchedulerConfGenerator {
public void testGenerateSparkSchedulingConf() throws Exception {
HoodieDeltaStreamer.Config cfg = new HoodieDeltaStreamer.Config();
Map<String, String> configs = SchedulerConfGenerator.getSparkSchedulingConfigs(cfg);
assertNull(configs.get(DataSourceWriteOptions.SPARK_SCHEDULER_ALLOCATION_FILE_KEY()), "spark.scheduler.mode not set");
assertNull(configs.get(SparkConfigs.SPARK_SCHEDULER_ALLOCATION_FILE_KEY()), "spark.scheduler.mode not set");

System.setProperty(SchedulerConfGenerator.SPARK_SCHEDULER_MODE_KEY, "FAIR");
cfg.continuousMode = false;
configs = SchedulerConfGenerator.getSparkSchedulingConfigs(cfg);
assertNull(configs.get(DataSourceWriteOptions.SPARK_SCHEDULER_ALLOCATION_FILE_KEY()), "continuousMode is false");
assertNull(configs.get(SparkConfigs.SPARK_SCHEDULER_ALLOCATION_FILE_KEY()), "continuousMode is false");

cfg.continuousMode = true;
cfg.tableType = HoodieTableType.COPY_ON_WRITE.name();
configs = SchedulerConfGenerator.getSparkSchedulingConfigs(cfg);
assertNull(configs.get(DataSourceWriteOptions.SPARK_SCHEDULER_ALLOCATION_FILE_KEY()),
assertNull(configs.get(SparkConfigs.SPARK_SCHEDULER_ALLOCATION_FILE_KEY()),
"table type is not MERGE_ON_READ");

cfg.tableType = HoodieTableType.MERGE_ON_READ.name();
configs = SchedulerConfGenerator.getSparkSchedulingConfigs(cfg);
assertNotNull(configs.get(DataSourceWriteOptions.SPARK_SCHEDULER_ALLOCATION_FILE_KEY()), "all satisfies");
assertNotNull(configs.get(SparkConfigs.SPARK_SCHEDULER_ALLOCATION_FILE_KEY()), "all satisfies");
}
}