-
Notifications
You must be signed in to change notification settings - Fork 2.5k
[HUDI-2759] extract HoodieCatalogTable to coordinate spark catalog table and hoodie table #3998
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,303 @@ | ||
| /* | ||
| * Licensed to the Apache Software Foundation (ASF) under one or more | ||
| * contributor license agreements. See the NOTICE file distributed with | ||
| * this work for additional information regarding copyright ownership. | ||
| * The ASF licenses this file to You under the Apache License, Version 2.0 | ||
| * (the "License"); you may not use this file except in compliance with | ||
| * the License. You may obtain a copy of the License at | ||
| * | ||
| * http://www.apache.org/licenses/LICENSE-2.0 | ||
| * | ||
| * Unless required by applicable law or agreed to in writing, software | ||
| * distributed under the License is distributed on an "AS IS" BASIS, | ||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| * See the License for the specific language governing permissions and | ||
| * limitations under the License. | ||
| */ | ||
|
|
||
| package org.apache.spark.sql.catalyst.catalog | ||
|
|
||
| import org.apache.hudi.HoodieWriterUtils._ | ||
| import org.apache.hudi.common.config.DFSPropertiesConfiguration | ||
| import org.apache.hudi.common.model.HoodieTableType | ||
| import org.apache.hudi.common.table.HoodieTableConfig | ||
| import org.apache.hudi.common.table.HoodieTableMetaClient | ||
| import org.apache.hudi.common.util.ValidationUtils | ||
| import org.apache.hudi.keygen.ComplexKeyGenerator | ||
| import org.apache.hudi.keygen.factory.HoodieSparkKeyGeneratorFactory | ||
|
|
||
| import org.apache.spark.internal.Logging | ||
| import org.apache.spark.sql.{AnalysisException, SparkSession} | ||
| import org.apache.spark.sql.avro.SchemaConverters | ||
| import org.apache.spark.sql.catalyst.TableIdentifier | ||
| import org.apache.spark.sql.hudi.{HoodieOptionConfig, HoodieSqlUtils} | ||
| import org.apache.spark.sql.hudi.HoodieSqlUtils._ | ||
| import org.apache.spark.sql.types.{StructField, StructType} | ||
|
|
||
| import java.util.{Locale, Properties} | ||
|
|
||
| import scala.collection.JavaConverters._ | ||
| import scala.collection.mutable | ||
|
|
||
| /** | ||
| * A wrapper of hoodie CatalogTable instance and hoodie Table. | ||
| */ | ||
| class HoodieCatalogTable(val spark: SparkSession, val table: CatalogTable) extends Logging { | ||
|
|
||
| assert(table.provider.map(_.toLowerCase(Locale.ROOT)).orNull == "hudi", "It's not a Hudi table") | ||
|
|
||
| private val hadoopConf = spark.sessionState.newHadoopConf | ||
|
|
||
| /** | ||
| * database.table in catalog | ||
| */ | ||
| val catalogTableName = table.qualifiedName | ||
|
|
||
| /** | ||
| * properties defined in catalog. | ||
| */ | ||
| val catalogProperties: Map[String, String] = table.storage.properties ++ table.properties | ||
|
|
||
| /** | ||
| * hoodie table's location. | ||
| * if create managed hoodie table, use `catalog.defaultTablePath`. | ||
| */ | ||
| val tableLocation: String = HoodieSqlUtils.getTableLocation(table, spark) | ||
|
|
||
| /** | ||
| * A flag to whether the hoodie table exists. | ||
| */ | ||
| val hoodieTableExists: Boolean = tableExistsInPath(tableLocation, hadoopConf) | ||
|
|
||
| /** | ||
| * Meta Client. | ||
| */ | ||
| lazy val metaClient: HoodieTableMetaClient = HoodieTableMetaClient.builder() | ||
| .setBasePath(tableLocation) | ||
| .setConf(hadoopConf) | ||
| .build() | ||
|
|
||
| /** | ||
| * Hoodie Table Config | ||
| */ | ||
| lazy val tableConfig: HoodieTableConfig = metaClient.getTableConfig | ||
|
|
||
| /** | ||
| * the name of table | ||
| */ | ||
| lazy val tableName: String = tableConfig.getTableName | ||
|
|
||
| /** | ||
| * The name of type of table | ||
| */ | ||
| lazy val tableType: HoodieTableType = tableConfig.getTableType | ||
|
|
||
| /** | ||
| * The type of table | ||
| */ | ||
| lazy val tableTypeName: String = tableType.name() | ||
|
|
||
| /** | ||
| * Recored Field List(Primary Key List) | ||
| */ | ||
| lazy val primaryKeys: Array[String] = tableConfig.getRecordKeyFields.orElse(Array.empty) | ||
|
|
||
| /** | ||
| * PreCombine Field | ||
| */ | ||
| lazy val preCombineKey: Option[String] = Option(tableConfig.getPreCombineField) | ||
|
|
||
| /** | ||
| * Paritition Fields | ||
| */ | ||
| lazy val partitionFields: Array[String] = tableConfig.getPartitionFields.orElse(Array.empty) | ||
|
|
||
| /** | ||
| * The schema of table. | ||
| * Make StructField nullable. | ||
| */ | ||
| lazy val tableSchema: StructType = { | ||
| val originSchema = getTableSqlSchema(metaClient, includeMetadataFields = true).get | ||
| StructType(originSchema.map(_.copy(nullable = true))) | ||
| } | ||
|
|
||
| /** | ||
| * The schema without hoodie meta fields | ||
| */ | ||
| lazy val tableSchemaWithoutMetaFields: StructType = HoodieSqlUtils.removeMetaFields(tableSchema) | ||
|
|
||
| /** | ||
| * The schema of data fields | ||
| */ | ||
| lazy val dataSchema: StructType = { | ||
| StructType(tableSchema.filterNot(f => partitionFields.contains(f.name))) | ||
| } | ||
|
|
||
| /** | ||
| * The schema of data fields not including hoodie meta fields | ||
| */ | ||
| lazy val dataSchemaWithoutMetaFields: StructType = HoodieSqlUtils.removeMetaFields(dataSchema) | ||
|
|
||
| /** | ||
| * The schema of partition fields | ||
| */ | ||
| lazy val partitionSchema: StructType = StructType(tableSchema.filter(f => partitionFields.contains(f.name))) | ||
|
|
||
| /** | ||
| * All the partition paths | ||
| */ | ||
| def getAllPartitionPaths: Seq[String] = HoodieSqlUtils.getAllPartitionPaths(spark, table) | ||
|
|
||
| /** | ||
| * init hoodie table for create table (as select) | ||
| */ | ||
| def initHoodieTable(): Unit = { | ||
| logInfo(s"Init hoodie.properties for ${table.identifier.unquotedString}") | ||
| val (finalSchema, tableConfigs) = parseSchemaAndConfigs() | ||
|
|
||
| // Save all the table config to the hoodie.properties. | ||
| val properties = new Properties() | ||
| properties.putAll(tableConfigs.asJava) | ||
|
|
||
| HoodieTableMetaClient.withPropertyBuilder() | ||
| .fromProperties(properties) | ||
| .setTableName(table.identifier.table) | ||
| .setTableCreateSchema(SchemaConverters.toAvroType(finalSchema).toString()) | ||
| .setPartitionFields(table.partitionColumnNames.mkString(",")) | ||
| .initTable(hadoopConf, tableLocation) | ||
| } | ||
|
|
||
| /** | ||
| * @return schema, table parameters in which all parameters aren't sql-styled. | ||
| */ | ||
| private def parseSchemaAndConfigs(): (StructType, Map[String, String]) = { | ||
| val globalProps = DFSPropertiesConfiguration.getGlobalProps.asScala.toMap | ||
| val globalTableConfigs = mappingSparkDatasourceConfigsToTableConfigs(globalProps) | ||
| val globalSqlOptions = HoodieOptionConfig.mappingTableConfigToSqlOption(globalTableConfigs) | ||
|
|
||
| val sqlOptions = HoodieOptionConfig.withDefaultSqlOptions(globalSqlOptions ++ catalogProperties) | ||
|
|
||
| // get final schema and parameters | ||
| val (finalSchema, tableConfigs) = (table.tableType, hoodieTableExists) match { | ||
| case (CatalogTableType.EXTERNAL, true) => | ||
| val existingTableConfig = tableConfig.getProps.asScala.toMap | ||
| val currentTableConfig = globalTableConfigs ++ existingTableConfig | ||
| val catalogTableProps = HoodieOptionConfig.mappingSqlOptionToTableConfig(catalogProperties) | ||
| validateTableConfig(spark, catalogTableProps, convertMapToHoodieConfig(existingTableConfig)) | ||
|
|
||
| val options = extraTableConfig(spark, hoodieTableExists, currentTableConfig) ++ | ||
| HoodieOptionConfig.mappingSqlOptionToTableConfig(sqlOptions) ++ currentTableConfig | ||
|
|
||
| ValidationUtils.checkArgument(tableSchema.nonEmpty || table.schema.nonEmpty, | ||
| s"Missing schema for Create Table: $catalogTableName") | ||
| val schema = if (tableSchema.nonEmpty) { | ||
| tableSchema | ||
| } else { | ||
| addMetaFields(table.schema) | ||
| } | ||
|
|
||
| (schema, options) | ||
|
|
||
| case (_, false) => | ||
| ValidationUtils.checkArgument(table.schema.nonEmpty, | ||
| s"Missing schema for Create Table: $catalogTableName") | ||
| val schema = table.schema | ||
| val options = extraTableConfig(spark, isTableExists = false, globalTableConfigs) ++ | ||
| HoodieOptionConfig.mappingSqlOptionToTableConfig(sqlOptions) | ||
| (addMetaFields(schema), options) | ||
|
|
||
| case (CatalogTableType.MANAGED, true) => | ||
| throw new AnalysisException(s"Can not create the managed table('$catalogTableName')" + | ||
| s". The associated location('$tableLocation') already exists.") | ||
|
Comment on lines
+209
to
+211
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. @YannByron @xushiyan @leesf do you have context on this condition where it intentionally fails the case? This is related to #13931. The flow of interest is: the managed table is created first with |
||
| } | ||
| HoodieOptionConfig.validateTable(spark, finalSchema, | ||
| HoodieOptionConfig.mappingTableConfigToSqlOption(tableConfigs)) | ||
|
|
||
| val resolver = spark.sessionState.conf.resolver | ||
| val dataSchema = finalSchema.filterNot { f => | ||
| table.partitionColumnNames.exists(resolver(_, f.name)) | ||
| } | ||
| verifyDataSchema(table.identifier, table.tableType, dataSchema) | ||
|
|
||
| (finalSchema, tableConfigs) | ||
| } | ||
|
|
||
| private def extraTableConfig(sparkSession: SparkSession, isTableExists: Boolean, | ||
| originTableConfig: Map[String, String] = Map.empty): Map[String, String] = { | ||
| val extraConfig = mutable.Map.empty[String, String] | ||
| if (isTableExists) { | ||
| val allPartitionPaths = getAllPartitionPaths | ||
| if (originTableConfig.contains(HoodieTableConfig.HIVE_STYLE_PARTITIONING_ENABLE.key)) { | ||
| extraConfig(HoodieTableConfig.HIVE_STYLE_PARTITIONING_ENABLE.key) = | ||
| originTableConfig(HoodieTableConfig.HIVE_STYLE_PARTITIONING_ENABLE.key) | ||
| } else { | ||
| extraConfig(HoodieTableConfig.HIVE_STYLE_PARTITIONING_ENABLE.key) = | ||
| String.valueOf(isHiveStyledPartitioning(allPartitionPaths, table)) | ||
| } | ||
| if (originTableConfig.contains(HoodieTableConfig.URL_ENCODE_PARTITIONING.key)) { | ||
| extraConfig(HoodieTableConfig.URL_ENCODE_PARTITIONING.key) = | ||
| originTableConfig(HoodieTableConfig.URL_ENCODE_PARTITIONING.key) | ||
| } else { | ||
| extraConfig(HoodieTableConfig.URL_ENCODE_PARTITIONING.key) = | ||
| String.valueOf(isUrlEncodeEnabled(allPartitionPaths, table)) | ||
| } | ||
| } else { | ||
| extraConfig(HoodieTableConfig.HIVE_STYLE_PARTITIONING_ENABLE.key) = "true" | ||
| extraConfig(HoodieTableConfig.URL_ENCODE_PARTITIONING.key) = HoodieTableConfig.URL_ENCODE_PARTITIONING.defaultValue() | ||
| } | ||
|
|
||
| if (originTableConfig.contains(HoodieTableConfig.KEY_GENERATOR_CLASS_NAME.key)) { | ||
| extraConfig(HoodieTableConfig.KEY_GENERATOR_CLASS_NAME.key) = | ||
| HoodieSparkKeyGeneratorFactory.convertToSparkKeyGenerator( | ||
| originTableConfig(HoodieTableConfig.KEY_GENERATOR_CLASS_NAME.key)) | ||
| } else { | ||
| extraConfig(HoodieTableConfig.KEY_GENERATOR_CLASS_NAME.key) = classOf[ComplexKeyGenerator].getCanonicalName | ||
| } | ||
| extraConfig.toMap | ||
| } | ||
|
|
||
| // This code is forked from org.apache.spark.sql.hive.HiveExternalCatalog#verifyDataSchema | ||
| private def verifyDataSchema(tableIdentifier: TableIdentifier, tableType: CatalogTableType, | ||
| dataSchema: Seq[StructField]): Unit = { | ||
| if (tableType != CatalogTableType.VIEW) { | ||
| val invalidChars = Seq(",", ":", ";") | ||
| def verifyNestedColumnNames(schema: StructType): Unit = schema.foreach { f => | ||
| f.dataType match { | ||
| case st: StructType => verifyNestedColumnNames(st) | ||
| case _ if invalidChars.exists(f.name.contains) => | ||
| val invalidCharsString = invalidChars.map(c => s"'$c'").mkString(", ") | ||
| val errMsg = "Cannot create a table having a nested column whose name contains " + | ||
| s"invalid characters ($invalidCharsString) in Hive metastore. Table: $tableIdentifier; " + | ||
| s"Column: ${f.name}" | ||
| throw new AnalysisException(errMsg) | ||
| case _ => | ||
| } | ||
| } | ||
|
|
||
| dataSchema.foreach { f => | ||
| f.dataType match { | ||
| // Checks top-level column names | ||
| case _ if f.name.contains(",") => | ||
| throw new AnalysisException("Cannot create a table having a column whose name " + | ||
| s"contains commas in Hive metastore. Table: $tableIdentifier; Column: ${f.name}") | ||
| // Checks nested column names | ||
| case st: StructType => | ||
| verifyNestedColumnNames(st) | ||
| case _ => | ||
| } | ||
| } | ||
| } | ||
| } | ||
| } | ||
|
|
||
| object HoodieCatalogTable { | ||
|
|
||
| def apply(sparkSession: SparkSession, tableIdentifier: TableIdentifier): HoodieCatalogTable = { | ||
| val catalogTable = sparkSession.sessionState.catalog.getTableMetadata(tableIdentifier) | ||
| HoodieCatalogTable(sparkSession, catalogTable) | ||
| } | ||
|
|
||
| def apply(sparkSession: SparkSession, catalogTable: CatalogTable): HoodieCatalogTable = { | ||
| new HoodieCatalogTable(sparkSession, catalogTable) | ||
| } | ||
| } | ||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
if
hoodie.datasource.write.drop.partition.columnsis false, then shall we keep the dataSchema same as tableSchema?There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
if
hoodie.datasource.write.drop.partition.columnsis false, tableSchema doesn't contains partition columns. And dataSchema generated by the codes above will be same with tableSchema. So, i think there is not necessary to change.