Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add trait based ScalarUDF API #8578

Merged
merged 13 commits into from
Dec 28, 2023
Merged
Show file tree
Hide file tree
Changes from 7 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion datafusion-examples/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -58,8 +58,9 @@ cargo run --example csv_sql
- [`query-aws-s3.rs`](examples/external_dependency/query-aws-s3.rs): Configure `object_store` and run a query against files stored in AWS S3
- [`query-http-csv.rs`](examples/query-http-csv.rs): Configure `object_store` and run a query against files vi HTTP
- [`rewrite_expr.rs`](examples/rewrite_expr.rs): Define and invoke a custom Query Optimizer pass
- [`simple_udf.rs`](examples/simple_udf.rs): Define and invoke a User Defined Scalar Function (UDF)
- [`advanced_udf.rs`](examples/advanced_udf.rs): Define and invoke a more complicated User Defined Scalar Function (UDF)
- [`simple_udaf.rs`](examples/simple_udaf.rs): Define and invoke a User Defined Aggregate Function (UDAF)
- [`simple_udf.rs`](examples/simple_udf.rs): Define and invoke a User Defined (scalar) Function (UDF)
- [`simple_udfw.rs`](examples/simple_udwf.rs): Define and invoke a User Defined Window Function (UDWF)

## Distributed
Expand Down
243 changes: 243 additions & 0 deletions datafusion-examples/examples/advanced_udf.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,243 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.

use datafusion::{
arrow::{
array::{ArrayRef, Float32Array, Float64Array},
datatypes::DataType,
record_batch::RecordBatch,
},
logical_expr::Volatility,
};
use std::any::Any;

use arrow::array::{new_null_array, Array, AsArray};
use arrow::compute;
use arrow::datatypes::Float64Type;
use datafusion::error::Result;
use datafusion::prelude::*;
use datafusion_common::{internal_err, ScalarValue};
use datafusion_expr::{ColumnarValue, ScalarUDF, ScalarUDFImpl, Signature};
use std::sync::Arc;

/// This example shows how to use the full ScalarUDFImpl API to implement a user
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I wanted to create an example that shows how to make a more advanced UDF that special cases constant values.

This also shows how to create a ScalarUDF using a trait (rather than free functions and closures)

/// defined function. As in the `simple_udf.rs` example, this struct implements
/// a function that takes two arguments and returns the first argument raised to
/// the power of the second argument `a^b`.
///
/// To do so, we must implement the `ScalarUDFImpl` trait.
struct PowUdf {
signature: Signature,
aliases: Vec<String>,
}

impl PowUdf {
/// Create a new instance of the `PowUdf` struct
fn new() -> Self {
Self {
signature: Signature::exact(
// this function will always take two arguments of type f64
vec![DataType::Float64, DataType::Float64],
// this function is deterministic and will always return the same
// result for the same input
Volatility::Immutable,
),
// we will also add an alias of "my_pow"
aliases: vec!["my_pow".to_string()],
}
}
}

impl ScalarUDFImpl for PowUdf {
/// We implement as_any so that we can downcast the ScalarUDFImpl trait object
fn as_any(&self) -> &dyn Any {
self
}

/// Return the name of this function
fn name(&self) -> &str {
"pow"
}

/// Return the "signature" of this function -- namely what types of arguments it will take
fn signature(&self) -> &Signature {
&self.signature
}

/// What is the type of value that will be returned by this function? In
/// this case it will always be a constant value, but it could also be a
/// function of the input types.
fn return_type(&self, _arg_types: &[DataType]) -> Result<DataType> {
Ok(DataType::Float64)
}

/// This is the function that actually calculates the results.
///
/// This is the same way that functions built into DataFusion are invoked,
/// which permits important special cases when one or both of the arguments
/// are single values (constants). For example `pow(a, 2)`
///
/// However, it also means the implementation is more complex than when
/// using `create_udf`.
fn invoke(&self, args: &[ColumnarValue]) -> Result<ColumnarValue> {
// DataFusion has arranged for the correct inputs to be passed to this
// function, but we check again to make sure
assert_eq!(args.len(), 2);
let (base, exp) = (&args[0], &args[1]);
assert_eq!(base.data_type(), DataType::Float64);
assert_eq!(exp.data_type(), DataType::Float64);

match (base, exp) {
// For demonstration purposes we also implement the scalar / scalar
// case here, but it is not typically required for high performance.
//
// For performance it is most important to optimize cases where at
// least one argument is an array. If all arguments are constants,
// the DataFusion expression simplification logic will often invoke
// this path once during planning, and simply use the result during
// execution.
(
ColumnarValue::Scalar(ScalarValue::Float64(base)),
ColumnarValue::Scalar(ScalarValue::Float64(exp)),
) => {
// compute the output. Note DataFusion treats `None` as NULL.
let res = match (base, exp) {
(Some(base), Some(exp)) => Some(base.powf(*exp)),
// one or both arguments were NULL
_ => None,
};
Ok(ColumnarValue::Scalar(ScalarValue::from(res)))
}
// special case if the exponent is a constant
(
ColumnarValue::Array(base_array),
ColumnarValue::Scalar(ScalarValue::Float64(exp)),
) => {
let result_array = match exp {
// a ^ null = null
None => new_null_array(base_array.data_type(), base_array.len()),
// a ^ exp
Some(exp) => {
// DataFusion has ensured both arguments are Float64:
let base_array = base_array.as_primitive::<Float64Type>();
// calculate the result for every row. The `unary` very
// fast, "vectorized" code and handles things like null
// values for us.
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Not sure if I read it correctly:

Suggested change
// calculate the result for every row. The `unary` very
// fast, "vectorized" code and handles things like null
// values for us.
// calculate the result for every row. The `unary` is very
// fast "vectorized" code and handles things like null
// values for us.

let res: Float64Array =
compute::unary(base_array, |base| base.powf(*exp));
Arc::new(res)
}
};
Ok(ColumnarValue::Array(result_array))
}

// special case if the base is a constant (note this code is quite
// similar to the previous case, so we omit comments)
(
ColumnarValue::Scalar(ScalarValue::Float64(base)),
ColumnarValue::Array(exp_array),
) => {
let res = match base {
None => new_null_array(exp_array.data_type(), exp_array.len()),
Some(base) => {
let exp_array = exp_array.as_primitive::<Float64Type>();
let res: Float64Array =
compute::unary(exp_array, |exp| base.powf(exp));
Arc::new(res)
}
};
Ok(ColumnarValue::Array(res))
}
// Both arguments are arrays so we have to perform the calculation for every row
(ColumnarValue::Array(base_array), ColumnarValue::Array(exp_array)) => {
let res: Float64Array = compute::binary(
base_array.as_primitive::<Float64Type>(),
exp_array.as_primitive::<Float64Type>(),
|base, exp| base.powf(exp),
)?;
Ok(ColumnarValue::Array(Arc::new(res)))
}
// if the types were not float, it is a bug in DataFusion
_ => {
use datafusion_common::DataFusionError;
internal_err!("Invalid argument types to pow function")
}
}
}

/// We will also add an alias of "my_pow"
fn aliases(&self) -> &[String] {
&self.aliases
}
}

/// In this example we register `PowUdf` as a user defined function
/// and invoke it via the DataFrame API and SQL
#[tokio::main]
async fn main() -> Result<()> {
let ctx = create_context()?;

// create the UDF
let pow = ScalarUDF::from(PowUdf::new());

// register the UDF with the context so it can be invoked by name and from SQL
ctx.register_udf(pow.clone());

// get a DataFrame from the context for scanning the "t" table
let df = ctx.table("t").await?;

// Call pow(a, 10) using the DataFrame API
let df = df.select(vec![pow.call(vec![col("a"), lit(10i32)])])?;

// note that the second argument is passed as an i32, not f64. DataFusion
// automatically coerces the types to match the UDF's defined signature.

// print the results
df.show().await?;

// You can also invoke both pow(2, 10) and its alias my_pow(a, b) using SQL
let sql_df = ctx.sql("SELECT pow(2, 10), my_pow(a, b) FROM t").await?;
sql_df.show().await?;

Ok(())
}

/// create local execution context with an in-memory table:
///
/// ```text
/// +-----+-----+
/// | a | b |
/// +-----+-----+
/// | 2.1 | 1.0 |
/// | 3.1 | 2.0 |
/// | 4.1 | 3.0 |
/// | 5.1 | 4.0 |
/// +-----+-----+
/// ```
fn create_context() -> Result<SessionContext> {
// define data.
let a: ArrayRef = Arc::new(Float32Array::from(vec![2.1, 3.1, 4.1, 5.1]));
let b: ArrayRef = Arc::new(Float64Array::from(vec![1.0, 2.0, 3.0, 4.0]));
let batch = RecordBatch::try_from_iter(vec![("a", a), ("b", b)])?;

// declare a new context. In spark API, this corresponds to a new spark SQLsession
alamb marked this conversation as resolved.
Show resolved Hide resolved
let ctx = SessionContext::new();

// declare a table in memory. In spark API, this corresponds to createDataFrame(...).
alamb marked this conversation as resolved.
Show resolved Hide resolved
ctx.register_batch("t", batch)?;
Ok(ctx)
}
6 changes: 6 additions & 0 deletions datafusion-examples/examples/simple_udf.rs
Original file line number Diff line number Diff line change
Expand Up @@ -140,5 +140,11 @@ async fn main() -> Result<()> {
// print the results
df.show().await?;

// Given that `pow` is registered in the context, we can also use it in SQL:
let sql_df = ctx.sql("SELECT pow(a, b) FROM t").await?;

// print the results
sql_df.show().await?;

Ok(())
}
55 changes: 36 additions & 19 deletions datafusion/expr/src/expr.rs
Original file line number Diff line number Diff line change
Expand Up @@ -1724,13 +1724,13 @@ mod test {
use crate::expr::Cast;
use crate::expr_fn::col;
use crate::{
case, lit, BuiltinScalarFunction, ColumnarValue, Expr, ReturnTypeFunction,
ScalarFunctionDefinition, ScalarFunctionImplementation, ScalarUDF, Signature,
Volatility,
case, lit, BuiltinScalarFunction, ColumnarValue, Expr, ScalarFunctionDefinition,
ScalarUDF, ScalarUDFImpl, Signature, Volatility,
};
use arrow::datatypes::DataType;
use datafusion_common::Column;
use datafusion_common::{Result, ScalarValue};
use std::any::Any;
use std::sync::Arc;

#[test]
Expand Down Expand Up @@ -1848,24 +1848,41 @@ mod test {
);

// UDF
let return_type: ReturnTypeFunction =
Arc::new(move |_| Ok(Arc::new(DataType::Utf8)));
let fun: ScalarFunctionImplementation =
Arc::new(move |_| Ok(ColumnarValue::Scalar(ScalarValue::new_utf8("a"))));
let udf = Arc::new(ScalarUDF::new(
"TestScalarUDF",
&Signature::uniform(1, vec![DataType::Float32], Volatility::Stable),
&return_type,
&fun,
));
struct TestScalarUDF {
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This shows an example of the difference in trait based vs low level ScalarValue::new API that I propose to deprecate

While the trait requires more lines, I think it is much easier to implement as it is simply a standard trait implementation which I believe is far more common than Arc'd closures

signature: Signature,
}
impl ScalarUDFImpl for TestScalarUDF {
fn as_any(&self) -> &dyn Any {
self
}
fn name(&self) -> &str {
"TestScalarUDF"
}

fn signature(&self) -> &Signature {
&self.signature
}

fn return_type(&self, _arg_types: &[DataType]) -> Result<DataType> {
Ok(DataType::Utf8)
}

fn invoke(&self, _args: &[ColumnarValue]) -> Result<ColumnarValue> {
Ok(ColumnarValue::Scalar(ScalarValue::from("a")))
}
}
let udf = Arc::new(ScalarUDF::from(TestScalarUDF {
signature: Signature::uniform(1, vec![DataType::Float32], Volatility::Stable),
}));
assert!(!ScalarFunctionDefinition::UDF(udf).is_volatile().unwrap());

let udf = Arc::new(ScalarUDF::new(
"TestScalarUDF",
&Signature::uniform(1, vec![DataType::Float32], Volatility::Volatile),
&return_type,
&fun,
));
let udf = Arc::new(ScalarUDF::from(TestScalarUDF {
signature: Signature::uniform(
1,
vec![DataType::Float32],
Volatility::Volatile,
),
}));
assert!(ScalarFunctionDefinition::UDF(udf).is_volatile().unwrap());

// Unresolved function
Expand Down
Loading