Skip to content
Closed
4,315 changes: 0 additions & 4,315 deletions rust/datafusion/src/physical_plan/expressions.rs

This file was deleted.

287 changes: 287 additions & 0 deletions rust/datafusion/src/physical_plan/expressions/average.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,287 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.

//! Defines physical expressions that can evaluated at runtime during query execution

use std::convert::TryFrom;
use std::sync::Arc;

use crate::error::{DataFusionError, Result};
use crate::physical_plan::{Accumulator, AggregateExpr, PhysicalExpr};
use crate::scalar::ScalarValue;
use arrow::compute;
use arrow::datatypes::DataType;
use arrow::{
array::{ArrayRef, UInt64Array},
datatypes::Field,
};

use super::{format_state_name, sum};

/// AVG aggregate expression
#[derive(Debug)]
pub struct Avg {
name: String,
data_type: DataType,
nullable: bool,
expr: Arc<dyn PhysicalExpr>,
}

/// function return type of an average
pub fn avg_return_type(arg_type: &DataType) -> Result<DataType> {
match arg_type {
DataType::Int8
| DataType::Int16
| DataType::Int32
| DataType::Int64
| DataType::UInt8
| DataType::UInt16
| DataType::UInt32
| DataType::UInt64
| DataType::Float32
| DataType::Float64 => Ok(DataType::Float64),
other => Err(DataFusionError::Plan(format!(
"AVG does not support {:?}",
other
))),
}
}

impl Avg {
/// Create a new AVG aggregate function
pub fn new(expr: Arc<dyn PhysicalExpr>, name: String, data_type: DataType) -> Self {
Self {
name,
expr,
data_type,
nullable: true,
}
}
}

impl AggregateExpr for Avg {
fn field(&self) -> Result<Field> {
Ok(Field::new(&self.name, DataType::Float64, true))
}

fn state_fields(&self) -> Result<Vec<Field>> {
Ok(vec![
Field::new(
&format_state_name(&self.name, "count"),
DataType::UInt64,
true,
),
Field::new(
&format_state_name(&self.name, "sum"),
DataType::Float64,
true,
),
])
}

fn create_accumulator(&self) -> Result<Box<dyn Accumulator>> {
Ok(Box::new(AvgAccumulator::try_new(
// avg is f64
&DataType::Float64,
)?))
}

fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
vec![self.expr.clone()]
}
}

/// An accumulator to compute the average
#[derive(Debug)]
pub struct AvgAccumulator {
// sum is used for null
sum: ScalarValue,
count: u64,
}

impl AvgAccumulator {
/// Creates a new `AvgAccumulator`
pub fn try_new(datatype: &DataType) -> Result<Self> {
Ok(Self {
sum: ScalarValue::try_from(datatype)?,
count: 0,
})
}
}

impl Accumulator for AvgAccumulator {
fn state(&self) -> Result<Vec<ScalarValue>> {
Ok(vec![ScalarValue::from(self.count), self.sum.clone()])
}

fn update(&mut self, values: &Vec<ScalarValue>) -> Result<()> {
let values = &values[0];

self.count += (!values.is_null()) as u64;
self.sum = sum::sum(&self.sum, values)?;

Ok(())
}

fn update_batch(&mut self, values: &Vec<ArrayRef>) -> Result<()> {
let values = &values[0];

self.count += (values.len() - values.data().null_count()) as u64;
self.sum = sum::sum(&self.sum, &sum::sum_batch(values)?)?;
Ok(())
}

fn merge(&mut self, states: &Vec<ScalarValue>) -> Result<()> {
let count = &states[0];
// counts are summed
if let ScalarValue::UInt64(Some(c)) = count {
self.count += c
} else {
unreachable!()
};

// sums are summed
self.sum = sum::sum(&self.sum, &states[1])?;
Ok(())
}

fn merge_batch(&mut self, states: &Vec<ArrayRef>) -> Result<()> {
let counts = states[0].as_any().downcast_ref::<UInt64Array>().unwrap();
// counts are summed
self.count += compute::sum(counts).unwrap_or(0);

// sums are summed
self.sum = sum::sum(&self.sum, &sum::sum_batch(&states[1])?)?;
Ok(())
}

fn evaluate(&self) -> Result<ScalarValue> {
match self.sum {
ScalarValue::Float64(e) => {
Ok(ScalarValue::Float64(e.map(|f| f / self.count as f64)))
}
_ => Err(DataFusionError::Internal(
"Sum should be f64 on average".to_string(),
)),
}
}
}

#[cfg(test)]
mod tests {
use super::*;
use crate::physical_plan::expressions::col;
use crate::{error::Result, generic_test_op};
use arrow::record_batch::RecordBatch;
use arrow::{array::*, datatypes::*};

#[test]
fn avg_i32() -> Result<()> {
let a: ArrayRef = Arc::new(Int32Array::from(vec![1, 2, 3, 4, 5]));
generic_test_op!(
a,
DataType::Int32,
Avg,
ScalarValue::from(3_f64),
DataType::Float64
)
}

#[test]
fn avg_i32_with_nulls() -> Result<()> {
let a: ArrayRef = Arc::new(Int32Array::from(vec![
Some(1),
None,
Some(3),
Some(4),
Some(5),
]));
generic_test_op!(
a,
DataType::Int32,
Avg,
ScalarValue::from(3.25f64),
DataType::Float64
)
}

#[test]
fn avg_i32_all_nulls() -> Result<()> {
let a: ArrayRef = Arc::new(Int32Array::from(vec![None, None]));
generic_test_op!(
a,
DataType::Int32,
Avg,
ScalarValue::Float64(None),
DataType::Float64
)
}

#[test]
fn avg_u32() -> Result<()> {
let a: ArrayRef =
Arc::new(UInt32Array::from(vec![1_u32, 2_u32, 3_u32, 4_u32, 5_u32]));
generic_test_op!(
a,
DataType::UInt32,
Avg,
ScalarValue::from(3.0f64),
DataType::Float64
)
}

#[test]
fn avg_f32() -> Result<()> {
let a: ArrayRef =
Arc::new(Float32Array::from(vec![1_f32, 2_f32, 3_f32, 4_f32, 5_f32]));
generic_test_op!(
a,
DataType::Float32,
Avg,
ScalarValue::from(3_f64),
DataType::Float64
)
}

#[test]
fn avg_f64() -> Result<()> {
let a: ArrayRef =
Arc::new(Float64Array::from(vec![1_f64, 2_f64, 3_f64, 4_f64, 5_f64]));
generic_test_op!(
a,
DataType::Float64,
Avg,
ScalarValue::from(3_f64),
DataType::Float64
)
}

fn aggregate(
batch: &RecordBatch,
agg: Arc<dyn AggregateExpr>,
) -> Result<ScalarValue> {
let mut accum = agg.create_accumulator()?;
let expr = agg.expressions();
let values = expr
.iter()
.map(|e| e.evaluate(batch))
.map(|r| r.map(|v| v.into_array(batch.num_rows())))
.collect::<Result<Vec<_>>>()?;
accum.update_batch(&values)?;
accum.evaluate()
}
}
Loading