-
Notifications
You must be signed in to change notification settings - Fork 4k
ARROW-10236: [Rust][DataFusion] Unify type casting logic in DataFusion #8400
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,218 @@ | ||
| // Licensed to the Apache Software Foundation (ASF) under one | ||
| // or more contributor license agreements. See the NOTICE file | ||
| // distributed with this work for additional information | ||
| // regarding copyright ownership. The ASF licenses this file | ||
| // to you under the Apache License, Version 2.0 (the | ||
| // "License"); you may not use this file except in compliance | ||
| // with the License. You may obtain a copy of the License at | ||
| // | ||
| // http://www.apache.org/licenses/LICENSE-2.0 | ||
| // | ||
| // Unless required by applicable law or agreed to in writing, | ||
| // software distributed under the License is distributed on an | ||
| // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
| // KIND, either express or implied. See the License for the | ||
| // specific language governing permissions and limitations | ||
| // under the License. | ||
|
|
||
| //! This module provides a way of checking what type casts are | ||
| //! supported at planning time for DataFusion. Since DataFusion uses | ||
| //! the Arrow `cast` compute kernel, the supported casts are the same | ||
| //! as the Arrow casts. | ||
| //! | ||
| //! The rules in this module are designed to be redundant with the | ||
| //! rules in the Arrow `cast` kernel. The redundancy is needed so that | ||
| //! DataFusion can generate an error at plan time rather than during | ||
| //! execution (which could happen many hours after execution starts, | ||
| //! when the query finally reaches that point) | ||
| //! | ||
|
|
||
| use arrow::datatypes::*; | ||
|
|
||
| /// Return true if a value of type `from_type` can be cast into a | ||
| /// value of `to_type`. Note that such as cast may be lossy. For | ||
| /// lossless type conversions, see the `type_coercion` module | ||
| /// | ||
| /// See the module level documentation for more detail on casting | ||
| pub fn can_cast_types(from_type: &DataType, to_type: &DataType) -> bool { | ||
| use self::DataType::*; | ||
| if from_type == to_type { | ||
| return true; | ||
| } | ||
|
|
||
| // Note this is meant to mirror the structure in arrow/src/compute/kernels/cast.rs | ||
| match (from_type, to_type) { | ||
|
Member
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This is something that I have been thinking about: in DataFusion, because we use dynamically typed arrays, we often have to annotate which types are supported by each arrow kernel / operation. Thus, we need to duplicate these I wonder if these functions shouldn't be closer to the implementation (i.e. in the It seems to me that the pattern is: for compute for datatypes: one idea would be to use so that both use-cases could be written in a single match (and reduce the risk of mis-typing / change in one place without a change in another place). This comment is not specific to this PR, which I need to go through: I was just curious about your thoughts on this, since you have been touching in a couple of these recently.
Contributor
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. @jorgecarleitao -- I think the idea of using a single
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I was also going to suggest if we move
Contributor
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. @jorgecarleitao and @nevi-me -- here is the the pattern I came up with: pub fn cast(array: &ArrayRef, to_type: &DataType) -> Result<ArrayRef> {
let from_type = array.data_type();
let func = get_cast_function(from_type, to_type)?;
func(array)
}
/// Returns true if the cast from `array.array` type is possible, false otherwise
pub fn can_cast(array: &ArrayRef, to_type: &DataType, ) -> bool {
let from_type = array.data_type();
get_cast_function(from_type, to_type).is_ok()
}
type CastFunction = Fn(&ArrayRef) -> Result<ArrayRef>;
/// Returns a function that can cast `array` to `to_type`.
///
/// All type checking for supported types should be done in
/// get_cast_func itself. Thus, if Ok(func) is returned, func(array)
/// should be able to succeed for arrays. In other words, Err(_)
/// should be returned by `get_cast_function`, NOT `func(array)` if
/// the types are incompatible.
///
/// can_cast relies on this functionality
fn get_cast_function(from_type: &DataType, to_type: &DataType) -> Result<CastFunction> {
use DataType::*;
// clone array if types are the same
if from_type == to_type {
return Ok(|array| { Ok(array.clone()) })
}
match (from_type, to_type) {
(Struct(_), _) => Err(ArrowError::ComputeError(
"Cannot cast from struct to other types".to_string(),
)),
(_, Struct(_)) => Err(ArrowError::ComputeError(
"Cannot cast to struct from other types".to_string(),
)),
(List(_), List(ref to)) => Ok(|array| {
let data = array.data_ref();
let underlying_array = make_array(data.child_data()[0].clone());
let cast_array = cast(&underlying_array, &to)?;
let array_data = ArrayData::new(
*to.clone(),
array.len(),
Some(cast_array.null_count()),
cast_array
.data()
.null_bitmap()
.clone()
.map(|bitmap| bitmap.bits),
array.offset(),
// reuse offset buffer
data.buffers().to_vec(),
vec![cast_array.data()],
);
let list = ListArray::from(Arc::new(array_data));
Ok(Arc::new(list) as ArrayRef)
}),
(List(_), _) => Err(ArrowError::ComputeError(
"Cannot cast list to non-list data types".to_string(),
)),
(_, List(ref to)) => {
// cast primitive to list's primitive
let cast_func = get_cast_function(from_type, &to)?;
Ok(move |array| {
let cast_array = cast_func(array, &to)?;
// create offsets, where if array.len() = 2, we have [0,1,2]
let offsets: Vec<i32> = (0..=array.len() as i32).collect();
let value_offsets = Buffer::from(offsets[..].to_byte_slice());
let list_data = ArrayData::new(
*to.clone(),
array.len(),
Some(cast_array.null_count()),
cast_array
.data()
.null_bitmap()
.clone()
.map(|bitmap| bitmap.bits),
0,
vec![value_offsets],
vec![cast_array.data()],
);
let list_array = Arc::new(ListArray::from(Arc::new(list_data))) as ArrayRef;
Ok(list_array)
})
}
...While I think it would work, I am not sure I will have enough time. Instead, I will get a PR up that moves the |
||
| (Struct(_), _) => false, | ||
| (_, Struct(_)) => false, | ||
| (List(list_from), List(list_to)) => can_cast_types(list_from, list_to), | ||
| (List(_), _) => false, | ||
| (_, List(list_to)) => can_cast_types(from_type, list_to), | ||
| (Dictionary(_, from_value_type), Dictionary(_, to_value_type)) => { | ||
| can_cast_types(from_value_type, to_value_type) | ||
| } | ||
| (Dictionary(_, value_type), _) => can_cast_types(value_type, to_type), | ||
| (_, Dictionary(_, value_type)) => can_cast_types(from_type, value_type), | ||
|
|
||
| (_, Boolean) => is_numeric_type(from_type), | ||
| (Boolean, _) => is_numeric_type(from_type) || from_type == &Utf8, | ||
| (Utf8, _) => is_numeric_type(to_type), | ||
| (_, Utf8) => is_numeric_type(from_type) || from_type == &Binary, | ||
|
|
||
| // start numeric casts | ||
| (UInt8, UInt16) => true, | ||
| (UInt8, UInt32) => true, | ||
| (UInt8, UInt64) => true, | ||
| (UInt8, Int8) => true, | ||
| (UInt8, Int16) => true, | ||
| (UInt8, Int32) => true, | ||
| (UInt8, Int64) => true, | ||
| (UInt8, Float32) => true, | ||
| (UInt8, Float64) => true, | ||
|
|
||
| (UInt16, UInt8) => true, | ||
| (UInt16, UInt32) => true, | ||
| (UInt16, UInt64) => true, | ||
| (UInt16, Int8) => true, | ||
| (UInt16, Int16) => true, | ||
| (UInt16, Int32) => true, | ||
| (UInt16, Int64) => true, | ||
| (UInt16, Float32) => true, | ||
| (UInt16, Float64) => true, | ||
|
|
||
| (UInt32, UInt8) => true, | ||
| (UInt32, UInt16) => true, | ||
| (UInt32, UInt64) => true, | ||
| (UInt32, Int8) => true, | ||
| (UInt32, Int16) => true, | ||
| (UInt32, Int32) => true, | ||
| (UInt32, Int64) => true, | ||
| (UInt32, Float32) => true, | ||
| (UInt32, Float64) => true, | ||
|
|
||
| (UInt64, UInt8) => true, | ||
| (UInt64, UInt16) => true, | ||
| (UInt64, UInt32) => true, | ||
| (UInt64, Int8) => true, | ||
| (UInt64, Int16) => true, | ||
| (UInt64, Int32) => true, | ||
| (UInt64, Int64) => true, | ||
| (UInt64, Float32) => true, | ||
| (UInt64, Float64) => true, | ||
|
|
||
| (Int8, UInt8) => true, | ||
| (Int8, UInt16) => true, | ||
| (Int8, UInt32) => true, | ||
| (Int8, UInt64) => true, | ||
| (Int8, Int16) => true, | ||
| (Int8, Int32) => true, | ||
| (Int8, Int64) => true, | ||
| (Int8, Float32) => true, | ||
| (Int8, Float64) => true, | ||
|
|
||
| (Int16, UInt8) => true, | ||
| (Int16, UInt16) => true, | ||
| (Int16, UInt32) => true, | ||
| (Int16, UInt64) => true, | ||
| (Int16, Int8) => true, | ||
| (Int16, Int32) => true, | ||
| (Int16, Int64) => true, | ||
| (Int16, Float32) => true, | ||
| (Int16, Float64) => true, | ||
|
|
||
| (Int32, UInt8) => true, | ||
| (Int32, UInt16) => true, | ||
| (Int32, UInt32) => true, | ||
| (Int32, UInt64) => true, | ||
| (Int32, Int8) => true, | ||
| (Int32, Int16) => true, | ||
| (Int32, Int64) => true, | ||
| (Int32, Float32) => true, | ||
| (Int32, Float64) => true, | ||
|
|
||
| (Int64, UInt8) => true, | ||
| (Int64, UInt16) => true, | ||
| (Int64, UInt32) => true, | ||
| (Int64, UInt64) => true, | ||
| (Int64, Int8) => true, | ||
| (Int64, Int16) => true, | ||
| (Int64, Int32) => true, | ||
| (Int64, Float32) => true, | ||
| (Int64, Float64) => true, | ||
|
|
||
| (Float32, UInt8) => true, | ||
| (Float32, UInt16) => true, | ||
| (Float32, UInt32) => true, | ||
| (Float32, UInt64) => true, | ||
| (Float32, Int8) => true, | ||
| (Float32, Int16) => true, | ||
| (Float32, Int32) => true, | ||
| (Float32, Int64) => true, | ||
| (Float32, Float64) => true, | ||
|
|
||
| (Float64, UInt8) => true, | ||
| (Float64, UInt16) => true, | ||
| (Float64, UInt32) => true, | ||
| (Float64, UInt64) => true, | ||
| (Float64, Int8) => true, | ||
| (Float64, Int16) => true, | ||
| (Float64, Int32) => true, | ||
| (Float64, Int64) => true, | ||
| (Float64, Float32) => true, | ||
| // end numeric casts | ||
|
|
||
| // temporal casts | ||
| (Int32, Date32(_)) => true, | ||
| (Int32, Time32(_)) => true, | ||
| (Date32(_), Int32) => true, | ||
| (Time32(_), Int32) => true, | ||
| (Int64, Date64(_)) => true, | ||
| (Int64, Time64(_)) => true, | ||
| (Date64(_), Int64) => true, | ||
| (Time64(_), Int64) => true, | ||
| (Date32(DateUnit::Day), Date64(DateUnit::Millisecond)) => true, | ||
| (Date64(DateUnit::Millisecond), Date32(DateUnit::Day)) => true, | ||
| (Time32(TimeUnit::Second), Time32(TimeUnit::Millisecond)) => true, | ||
| (Time32(TimeUnit::Millisecond), Time32(TimeUnit::Second)) => true, | ||
| (Time32(_), Time64(_)) => true, | ||
| (Time64(TimeUnit::Microsecond), Time64(TimeUnit::Nanosecond)) => true, | ||
| (Time64(TimeUnit::Nanosecond), Time64(TimeUnit::Microsecond)) => true, | ||
| (Time64(_), Time32(to_unit)) => match to_unit { | ||
| TimeUnit::Second => true, | ||
| TimeUnit::Millisecond => true, | ||
| _ => false, | ||
| }, | ||
| (Timestamp(_, _), Int64) => true, | ||
| (Int64, Timestamp(_, _)) => true, | ||
| (Timestamp(_, _), Timestamp(_, _)) => true, | ||
| (Timestamp(_, _), Date32(_)) => true, | ||
| (Timestamp(_, _), Date64(_)) => true, | ||
| // date64 to timestamp might not make sense, | ||
|
|
||
| // end temporal casts | ||
| (_, _) => false, | ||
| } | ||
| } | ||
|
|
||
| fn is_numeric_type(t: &DataType) -> bool { | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This is also something that can live in perhaps |
||
| use self::DataType::*; | ||
| match t { | ||
| UInt8 | UInt16 | UInt32 | UInt64 | Int8 | Int16 | Int32 | Int64 | Float32 | ||
| | Float64 => true, | ||
| _ => false, | ||
| } | ||
| } | ||
|
|
||
| #[cfg(test)] | ||
| mod tests { | ||
| // The purpose of this test is to verify that the rules of type | ||
| // casting between Arrow and DataFusion remain in sync. | ||
|
|
||
| // At a high level, each test attempts to cast the input arrays | ||
| // into the target type using the cast kernel and verifies the | ||
| // compatibility between `can_cast_from` and the cast kernel | ||
|
|
||
| #[test] | ||
| fn test_casting() { | ||
| //let arrays = vec![]; | ||
| } | ||
| } | ||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
the idea is to use a common
can_cast_typesfunction to detect valid casts at plan time, and makecan_cast_typesconsistent with the arrow cast kernel