-
Notifications
You must be signed in to change notification settings - Fork 0
anjshenoy/levenshtein
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
#################################################################################################### # This application was run using: #################################################################################################### 1. ruby 1.9.2 version 2. Gems used: rspec2. Installing the rspec gem (version 2.6.0) is required if you want to run tests. If you have RVM (see https://rvm.beginrescueend.com) and the bundler gem installed, run "bundle install" from the command line. Otherwise just run "gem install rspec" from the command line. 3. To run tests simply type "rake" at the command line. 4. To run the app type "ruby world.rb" at the command line. Note: I added a .rvmrc file to create a levenshtein gemset against ruby 1.9.2 version - so it doesn't intefere with any existing gemsets. This will also install bundler and use bundler to install rspec2. If you don't have rvm, it should not intefere with running the app or tests. #################################################################################################### # Execution time #################################################################################################### This application took ~19seconds (loading the population + building connections + counting nodes for causes). The code was run on OSX with a 2.4GHz Dual Core processor. Execution time depends on other cpu/memory hogging applications running at the same time. #################################################################################################### # Approach used #################################################################################################### 1. Load the population: Load the entire population into a hash of hashes with each sub-hash holding words of the same length. 2. Build connections: iterate through the words in each sub-hash (or level) and add friends. 3. Walk and count: Once connections are built, use "causes" as an input, walk the network and count the number of nodes. Keeping the base problem in mind i.e. to solve for a Levenshtein distance of 1 meant finding each word's children (a distance of 1 char less), siblings ( substitution of 1 char) and parents (1 char more). * Finding children is straightforward as a word of length S can have at most S children. For example children of the word causes would be: auses, cuses, cases, caues, causs, cause, which could be simply looked up in the hash for words of length 5. Thus finding children can be reduced to creating S possible words and looking them up among the words of length S-1. * Finding siblings is a little less straightforward, but is similar to finding children. Two siblings will always have a child in common by eliminating the character that is different. However, the index position at which the character is eliminated is important, as "causes" and "abuses" have a child "auses", but are not siblings. On the other hand, "causes" and "pauses" have "auses" as a child and are siblings. This means, siblings can be found using a children list, memorizing the position of the character eliminated, and connecting words with the same child. For example: one possible substitution of causes is *auses where * = any letter from a-z. Therefore, the hash for level 6 would contain {"auses1" => "causes"} - where 1 is the index position of the letter substituted and the value is the word. (Technically it holds the Node object for that word, but here I just use the word for simplicity). So the hash for causes would look like this: {"auses1" => "causes", "cuses2" => "causes", "cases3" => "causes", "caues4" => "causes", "causs5" => "causes", "cause6" => "causes"} Pretend the word causes has already been processed and the hash is loaded as above. Now when the iteration comes up against the word "pauses", it creates the word substitution combination below. The hash for pauses would look like this: {"auses1" => "pauses", "puses2" => "pauses", "pases3" => "pauses", "paues4" => "pauses", "pauss5" => "pauses", "pause6" => "pauses"} Except instead of adding the key "auses1" that already exists, we found a sibling of "pauses" with a Levenshtein distance of 1 and connect it with "causes". One the other hand, "abuses" will create "auses2", which will not match "auses1", and therefore not be linked to causes - which is correct, as the Levenshtein distance of "causes" and "abuses" is greater than one. It is worth noting that the above approach is more performant than iterating from a-z, substituting the respective index position character for each letter in the alphabet and then checking if the word exists in the population. The latter would take anywhere from S to S*26 iterations, where S is the length of the string; whereas the above approach would take at most S iterations. ** What about parent nodes? Finding parent word combinations is the hardest puzzle to solve since it is expensive to guess what the parent of a word should be. Given there are 26 letters in the alphabet, if a word is S letters long, that would make 26*S parent word combinations (times 260,000 words). We can get around this by building connections starting with the queue of longest words, finding siblings and children and then moving one level down and repeating. Thus we get the parents for free through finding the children. * Networks and Nodes: Each word is saved as a node object. When the population hash is loaded for the first time each word is converted into a node representing the word. Each node has an attribute called first_degree_friends to which it adds any children/siblings it runs across once connection building starts. Each time a node is added as a friend, it is doubly linked (see the add_friend method in the Node class). The reason for a two way link is to be able to walk the network from any node and not to end up at dead ends. * Walking the network: This is basically walking a double linked list. To make sure each node is counted once and to avoid circular traversals, an attribute on each node called "touched" is set to 1 if the node is counted. Computational time: The complexity of the above algorithm is O(P+N) = O(P) (N <= P) where P = size of the population and N = size of network versus O(P*N) = O(P^2) (N <= P) when iterating through the network. Processing the population as above costs less than the computational sum of loading the population and then iterating through each word in the network to find friends of a specific word. #################################################################################################### # Little optimizations applied along the way: #################################################################################################### 1. Network scans only need to be applied if there is the possibility of finding siblings/children/parents. That means, if a word is the only one in its level and there are no words in the level below it or in the level above it, then there's no possibility of finding friends. If so, constructing all possible child word combinations is useless. 2. Only add sibling word matches to the hash. Adding child word combinations is a waste, as children can be directly looked up in the base population (also in a hash). 3. Clearing the hash after processing all words at each level shaved off another second. The assumption is that it reduces the amount of memory operations (clearing keys vs. deleting the old hash and allocating a new hash object). #################################################################################################### # Initial approaches used: #################################################################################################### 1. Finding friends recursively - The problem statement itself suggested this. However, due to the size of the network the stack went belly up at 2187 levels deep. That meant the next approach would be iteration. 2. Finding friends iteratively - The first iterative approach checked each word against the base population to see if a parent/child/sibling existed that had not been already added to the network of the word "causes". This was first tested against a smaller dataset of 65000 and it ran in 1 hour, 20 minutes with a network size of about 16,000. However, when running against the full population, it ran for 8+ hrs suggesting a plain iterative solution was inadequate. A closer look at the algorithm revealed that it would take N*P or ~20 Billion operations (260K * 78K). Clearly I needed to reduce the size of the datasets. 3. Splitting the dataset - The most obvious way was to organize the data by length. Using the same algorithm as above (with a few optimizations), I was able to get a run time of ~67 minutes. However, I noticed that some of the datasets were quite large e.g. the population of words of length 8 was ~39K. I further split this into a hash of starts_with/ends_with parts so that it contained every possilbe string split for each word. The popluation hash start_with/ends_with for causes would look like this: {:starts_with => {"c" => ["causes"], "ca" => ["causes"], "cau" => ["causes"], "caus" => ["causes"], "cause" => ["causes"]}, :ends_with => {"auses" => ["causes"], "uses" => ["causes"], "ses" => ["causes"], "es" => ["causes"], "s" => ["causes"]}} Then I could split my input string into half like so: "cau"/"ses" for even strings or "ca"/"use" for odd strings. Then all that was required was looking up strings that matched the first/last half of the input string and iterating through those. The idea was to do as few iterations as possible since hash lookups are much cheaper than iterating through arrays. This approach got the run time down 480 seconds or 8 minutes. 4. The problem still was that this type of algorithm had a complexity of P*N where P = size of population and N = size of the network (or P’ * N where P’ = f(P) = reduced size of population (after organizing by length/word splits etc.)). That means as the population gets bigger, the network is likely to get bigger, which means the computational time will grow quadratically rather than linearly. This led to the final solution, which does not depend on the network size. It is also worth noting that the final solution yields every possible network in the population, and can be easily scaled to processing word-length-queues in parallel since finding friends at each level is independent of others. #################################################################################################### # Language of choice: ruby. Why? #################################################################################################### 1. Concise : ruby lets me use as little code as possible. As a case in point consider: self.citizens.keys.sort.reverse (in Population.build_connnections). 2. IRB - since it's interpreter-based, I can test as much or as little of my code right away. 3. Dynamic class loading - if I want to add a method to a class, I can simply extend it and add the method I want. 4. Easy to use testing framework.
About
Find words based on levenshtein distance
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published