Skip to content

Commit

Permalink
[MXNET-882] Support for N-d arrays added to diag op. (apache#12430)
Browse files Browse the repository at this point in the history
* Support for N-d arrays added to diag op.

* Doc for diag updated. Sanity fix. Unit test for N-d diag op added.

* Unwanted print in diag test removed.

* Bad negative axis support in diag fixed.

* Bad negative axis support in diag fixed.

* Index overflow in diag fixed. Exemplars for Nd diag added.

* A bug in diag op fixed.

* Types of axis number and dim size changed to dim_t in diag.

* A bug in params of diag fixed.

* Poisonous dim_t removed from diag parameters.

* Diag impl details documented in comments.
  • Loading branch information
jasonyu1996 authored and anirudh2290 committed Sep 19, 2018
1 parent dc6dad8 commit 94a9069
Show file tree
Hide file tree
Showing 4 changed files with 244 additions and 65 deletions.
2 changes: 2 additions & 0 deletions CONTRIBUTORS.md
Original file line number Diff line number Diff line change
Expand Up @@ -178,3 +178,5 @@ List of Contributors
* [Aaron Markham](https://github.com/aaronmarkham)
* [Sam Skalicky](https://github.com/samskalicky)
* [Per Goncalves da Silva](https://github.com/perdasilva)
* [Zhijingcheng Yu](https://github.com/jasonyu1996)
* [Cheng-Che Lee](https://github.com/stu1130)
232 changes: 173 additions & 59 deletions src/operator/tensor/diag_op-inl.h
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@
* Copyright (c) 2015 by Contributors
* \file diag_op-inl.h
* \brief CPU Implementation of the diag op
* \author Istvan Fehervari
* \author Istvan Fehervari, Zhijingcheng Yu
*/

#ifndef MXNET_OPERATOR_TENSOR_DIAG_OP_INL_H_
Expand All @@ -30,33 +30,51 @@
#include <dmlc/parameter.h>
#include <vector>
#include <algorithm>
#include <utility>
#include "../mxnet_op.h"
#include "../operator_common.h"
#include "../elemwise_op_common.h"
#include "./broadcast_reduce_op.h"

namespace mxnet {
namespace op {

struct DiagParam : public dmlc::Parameter<DiagParam> {
dmlc::optional<int> k;
int k;
int32_t axis1;
int32_t axis2;
DMLC_DECLARE_PARAMETER(DiagParam) {
DMLC_DECLARE_FIELD(k)
.set_default(dmlc::optional<int>(0))
.describe("Diagonal in question. The default is 0. "
"Use k>0 for diagonals above the main diagonal, "
"and k<0 for diagonals below the main diagonal. "
"If input has shape (S0 S1) k must be between -S0 and S1");
.set_default(0)
.describe("Diagonal in question. The default is 0. "
"Use k>0 for diagonals above the main diagonal, "
"and k<0 for diagonals below the main diagonal. "
"If input has shape (S0 S1) k must be between -S0 and S1");
DMLC_DECLARE_FIELD(axis1)
.set_default(0)
.describe("The first axis of the sub-arrays of interest. "
"Ignored when the input is a 1-D array.");
DMLC_DECLARE_FIELD(axis2)
.set_default(1)
.describe("The second axis of the sub-arrays of interest. "
"Ignored when the input is a 1-D array.");
}
};

inline TShape DiagShapeImpl(const TShape& ishape, const nnvm::dim_t k) {
inline TShape DiagShapeImpl(const TShape& ishape, const int k,
const int32_t axis1, const int32_t axis2) {
if (ishape.ndim() == 1) {
auto s = ishape[0] + std::abs(k);
return TShape({s, s});
}

auto h = ishape[0];
auto w = ishape[1];
int32_t x1 = CheckAxis(axis1, ishape.ndim());
int32_t x2 = CheckAxis(axis2, ishape.ndim());

CHECK_NE(x1, x2) << "axis1 and axis2 cannot refer to the the same axis " << x1;

auto h = ishape[x1];
auto w = ishape[x2];

if (k > 0) {
w -= k;
Expand All @@ -69,7 +87,24 @@ inline TShape DiagShapeImpl(const TShape& ishape, const nnvm::dim_t k) {
s = 0;
}

return TShape({s});
if (x1 > x2) {
std::swap(x1, x2);
}

int32_t n_dim = static_cast<int32_t>(ishape.ndim()) - 1;
TShape oshape(n_dim);

// remove axis1 and axis2 and append the new axis to the end
uint32_t idx = 0;
for (int32_t i = 0; i <= n_dim; ++i) {
if (i != x1 && i != x2) {
oshape[idx++] = ishape[i];
}
}

oshape[n_dim - 1] = s;

return oshape;
}

inline bool DiagOpShape(const nnvm::NodeAttrs& attrs,
Expand All @@ -79,12 +114,16 @@ inline bool DiagOpShape(const nnvm::NodeAttrs& attrs,
CHECK_EQ(out_attrs->size(), 1U);

const TShape& ishape = (*in_attrs)[0];
if (ishape.ndim() == 0) return false;
if (ishape.ndim() > 2) LOG(FATAL) << "Input must be 1- or 2-d.";
if (ishape.ndim() == 0) {
return false;
}

const DiagParam& param = nnvm::get<DiagParam>(attrs.parsed);

TShape oshape = DiagShapeImpl(ishape, param.k.value());
TShape oshape = DiagShapeImpl(ishape,
param.k,
param.axis1,
param.axis2);
if (shape_is_none(oshape)) {
LOG(FATAL) << "Diagonal does not exist.";
}
Expand All @@ -104,42 +143,144 @@ inline bool DiagOpType(const nnvm::NodeAttrs& attrs,
return (*out_attrs)[0] != -1;
}

template<int req>
template<int ndim, int req, bool back>
struct diag {
template<typename DType>
MSHADOW_XINLINE static void Map(int i, DType* out, const DType* a,
mshadow::Shape<2> ishape, int k) {
MSHADOW_XINLINE static void Map(index_t i, DType* out, const DType* a,
mshadow::Shape<ndim> oshape,
mshadow::Shape<ndim> ishape,
index_t stride, index_t offset,
index_t base) {
using namespace mxnet_op;
int j = 0;
if (k > 0) {
j = ravel(mshadow::Shape2(i, i + k), ishape);
} else if (k < 0) {
j = ravel(mshadow::Shape2(i - k, i), ishape);
index_t idx = i / base;
index_t j = ravel(unravel(idx, oshape), ishape) + offset + stride * (i - idx * base);
if (back) {
KERNEL_ASSIGN(out[j], req, a[i]);
} else {
j = ravel(mshadow::Shape2(i, i), ishape);
KERNEL_ASSIGN(out[i], req, a[j]);
}

KERNEL_ASSIGN(out[i], req, a[j]);
}
};

template<int req>
template<int req, bool back>
struct diag_gen {
template<typename DType>
MSHADOW_XINLINE static void Map(int i, DType* out, const DType* a,
MSHADOW_XINLINE static void Map(index_t i, DType* out, const DType* a,
mshadow::Shape<2> oshape, int k) {
using namespace mxnet_op;

auto j = unravel(i, oshape);
if (j[1] == (j[0] + k)) {
auto l = j[0] < j[1] ? j[0] : j[1];
KERNEL_ASSIGN(out[i], req, a[l]);
} else {
if (back) {
KERNEL_ASSIGN(out[l], req, a[i]);
} else {
KERNEL_ASSIGN(out[i], req, a[l]);
}
} else if (!back) {
KERNEL_ASSIGN(out[i], req, static_cast<DType>(0));
}
}
};

template<typename xpu, bool back>
void DiagOpProcess(const TBlob& in_data,
const TBlob& out_data,
const TShape& ishape,
const TShape& oshape,
index_t dsize,
const DiagParam& param,
mxnet_op::Stream<xpu> *s,
const std::vector<OpReqType>& req) {
using namespace mxnet_op;
using namespace mshadow;
if (ishape.ndim() > 1) {
// input : (leading + i, body + i, trailing)
uint32_t x1 = CheckAxis(param.axis1, ishape.ndim());
uint32_t x2 = CheckAxis(param.axis2, ishape.ndim());

uint32_t idim = ishape.ndim(), odim = oshape.ndim();

uint32_t minx = x1, maxx = x2;
if (minx > maxx) {
std::swap(minx, maxx);
}

// merges contiguous axes that are not separated
// by axis1 or axis2 since they can be directly
// mapped to the output and there is no need
// to distinguish them
// (After this the input will have no more than
// three axes, hence improving the rave and
// unravel efficiency)

index_t oleading = 1,
obody = 1,
otrailing = 1;

for (uint32_t i = 0; i < minx; ++i) {
oleading *= ishape[i];
}
for (uint32_t i = minx + 1; i < maxx; ++i) {
obody *= ishape[i];
}
for (uint32_t i = maxx + 1; i < idim; ++i) {
otrailing *= ishape[i];
}

index_t ileading = oleading,
ibody = obody * ishape[minx],
itrailing = otrailing * ishape[maxx];

index_t stride1 = itrailing * obody,
stride2 = otrailing;
// stride1 + stride2 is the stride for
// iterating over the diagonal in question

if (x1 == maxx) {
std::swap(stride1, stride2);
}

// the extra index offset introduced by k
index_t offset;
int k = param.k;
if (k > 0) {
offset = stride2 * k;
} else if (k < 0) {
offset = stride1 * -k;
} else {
offset = 0;
}

MSHADOW_TYPE_SWITCH(out_data.type_flag_, DType, {
MXNET_ASSIGN_REQ_SWITCH(req[0], req_type, {
if (back && req[0] != kAddTo && req[0] != kNullOp) {
out_data.FlatTo1D<xpu, DType>(s) = 0;
}
if (ileading == 1) {
Kernel<diag<2, req_type, back>, xpu>::Launch(s, dsize, out_data.dptr<DType>(),
in_data.dptr<DType>(), Shape2(obody, otrailing),
Shape2(ibody, itrailing),
stride1 + stride2, offset, oshape[odim - 1]);
} else {
Kernel<diag<3, req_type, back>, xpu>::Launch(s, dsize, out_data.dptr<DType>(),
in_data.dptr<DType>(), Shape3(oleading, obody, otrailing),
Shape3(ileading, ibody, itrailing),
stride1 + stride2, offset, oshape[odim - 1]);
}
});
});
} else {
MSHADOW_TYPE_SWITCH(out_data.type_flag_, DType, {
MXNET_ASSIGN_REQ_SWITCH(req[0], req_type, {
Kernel<diag_gen<req_type, back>, xpu>::Launch(s, dsize, out_data.dptr<DType>(),
in_data.dptr<DType>(), Shape2(oshape[0], oshape[1]),
param.k);
});
});
}
}

template<typename xpu>
void DiagOpForward(const nnvm::NodeAttrs& attrs,
const OpContext& ctx,
Expand All @@ -159,21 +300,7 @@ void DiagOpForward(const nnvm::NodeAttrs& attrs,
const TShape& oshape = outputs[0].shape_;
const DiagParam& param = nnvm::get<DiagParam>(attrs.parsed);

if (ishape.ndim() == 2) {
MSHADOW_TYPE_SWITCH(out_data.type_flag_, DType, {
MXNET_ASSIGN_REQ_SWITCH(req[0], req_type, {
Kernel<diag<req_type>, xpu>::Launch(s, out_data.Size(), out_data.dptr<DType>(),
in_data.dptr<DType>(), Shape2(ishape[0], ishape[1]), param.k.value());
});
});
} else {
MSHADOW_TYPE_SWITCH(out_data.type_flag_, DType, {
MXNET_ASSIGN_REQ_SWITCH(req[0], req_type, {
Kernel<diag_gen<req_type>, xpu>::Launch(s, out_data.Size(), out_data.dptr<DType>(),
in_data.dptr<DType>(), Shape2(oshape[0], oshape[1]), param.k.value());
});
});
}
DiagOpProcess<xpu, false>(in_data, out_data, ishape, oshape, out_data.Size(), param, s, req);
}

template<typename xpu>
Expand All @@ -194,23 +321,10 @@ void DiagOpBackward(const nnvm::NodeAttrs& attrs,
const TShape& oshape = outputs[0].shape_;
const DiagParam& param = nnvm::get<DiagParam>(attrs.parsed);

if (oshape.ndim() == 2) {
MSHADOW_TYPE_SWITCH(out_data.type_flag_, DType, {
MXNET_ASSIGN_REQ_SWITCH(req[0], req_type, {
Kernel<diag_gen<req_type>, xpu>::Launch(s, out_data.Size(), out_data.dptr<DType>(),
in_data.dptr<DType>(), Shape2(oshape[0], oshape[1]), param.k.value());
});
});
} else {
MSHADOW_TYPE_SWITCH(out_data.type_flag_, DType, {
MXNET_ASSIGN_REQ_SWITCH(req[0], req_type, {
Kernel<diag<req_type>, xpu>::Launch(s, out_data.Size(), out_data.dptr<DType>(),
in_data.dptr<DType>(), Shape2(ishape[0], ishape[1]), param.k.value());
});
});
}
DiagOpProcess<xpu, true>(in_data, out_data, oshape, ishape, in_data.Size(), param, s, req);
}


} // namespace op
} // namespace mxnet

Expand Down
27 changes: 23 additions & 4 deletions src/operator/tensor/diag_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@
* Copyright (c) 2015 by Contributors
* \file diag_op.cc
* \brief
* \author Istvan Fehervari
* \author Istvan Fehervari, Zhijingcheng Yu
*/

#include "./diag_op-inl.h"
Expand All @@ -36,9 +36,13 @@ NNVM_REGISTER_OP(diag)
``diag``'s behavior depends on the input array dimensions:
- 1-D arrays: constructs a 2-D array with the input as its diagonal, all other elements are zero
- 2-D arrays: returns elements in the diagonal as a new 1-D array
- N-D arrays: not supported yet
- 1-D arrays: constructs a 2-D array with the input as its diagonal, all other elements are zero.
- N-D arrays: extracts the diagonals of the sub-arrays with axes specified by ``axis1`` and ``axis2``.
The output shape would be decided by removing the axes numbered ``axis1`` and ``axis2`` from the
input shape and appending to the result a new axis with the size of the diagonals in question.
For example, when the input shape is `(2, 3, 4, 5)`, ``axis1`` and ``axis2`` are 0 and 2
respectively and ``k`` is 0, the resulting shape would be `(3, 5, 2)`.
Examples::
Expand All @@ -65,6 +69,21 @@ Examples::
[1, 0, 0],
[0, 2, 0]]
x = [[[1, 2],
[3, 4]],
[[5, 6],
[7, 8]]]
diag(x) = [[1, 7],
[2, 8]]
diag(x, k=1) = [[3],
[4]]
diag(x, axis1=-2, axis2=-1) = [[1, 4],
[5, 8]]
)code" ADD_FILELINE)
.set_attr_parser(ParamParser<DiagParam>)
.set_num_inputs(1)
Expand Down
Loading

0 comments on commit 94a9069

Please sign in to comment.