forked from apache/mxnet
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[MXNET-580] Add SN-GAN example (apache#12419)
* update sn-gan example * fix naming * add more comments * fix naming and refine comments * make power iteration as one hyperparameter * deal with divided by zero problem * replace 0.00000001 with EPSILON * refactor the example * add README * address the feedback * refine the composing * fix the typo, delete the redundant piece of code and update the result image * update folder name to align with others * update image name * add the variable back * remove the redundant piece of code and fix typo
- Loading branch information
1 parent
619bc3e
commit 46a5cee
Showing
7 changed files
with
423 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,44 @@ | ||
# Spectral Normalization GAN | ||
|
||
This example implements [Spectral Normalization for Generative Adversarial Networks](https://arxiv.org/abs/1802.05957) based on [CIFAR10](https://www.cs.toronto.edu/~kriz/cifar.html) dataset. | ||
|
||
## Usage | ||
|
||
Example runs and the results: | ||
|
||
```python | ||
python train.py --use-gpu --data-path=data | ||
``` | ||
|
||
* Note that the program would download the CIFAR10 for you | ||
|
||
`python train.py --help` gives the following arguments: | ||
|
||
```bash | ||
optional arguments: | ||
-h, --help show this help message and exit | ||
--data-path DATA_PATH | ||
path of data. | ||
--batch-size BATCH_SIZE | ||
training batch size. default is 64. | ||
--epochs EPOCHS number of training epochs. default is 100. | ||
--lr LR learning rate. default is 0.0001. | ||
--lr-beta LR_BETA learning rate for the beta in margin based loss. | ||
default is 0.5. | ||
--use-gpu use gpu for training. | ||
--clip_gr CLIP_GR Clip the gradient by projecting onto the box. default | ||
is 10.0. | ||
--z-dim Z_DIM dimension of the latent z vector. default is 100. | ||
``` | ||
## Result | ||
![SN-GAN](sn_gan_output.png) | ||
## Learned Spectral Normalization | ||
![alt text](https://github.com/taki0112/Spectral_Normalization-Tensorflow/blob/master/assests/sn.png) | ||
## Reference | ||
[Simple Tensorflow Implementation](https://github.com/taki0112/Spectral_Normalization-Tensorflow) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,42 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
|
||
# This example is inspired by https://github.com/jason71995/Keras-GAN-Library, | ||
# https://github.com/kazizzad/DCGAN-Gluon-MxNet/blob/master/MxnetDCGAN.ipynb | ||
# https://github.com/apache/incubator-mxnet/blob/master/example/gluon/dcgan.py | ||
|
||
import numpy as np | ||
|
||
import mxnet as mx | ||
from mxnet import gluon | ||
from mxnet.gluon.data.vision import CIFAR10 | ||
|
||
IMAGE_SIZE = 64 | ||
|
||
def transformer(data, label): | ||
""" data preparation """ | ||
data = mx.image.imresize(data, IMAGE_SIZE, IMAGE_SIZE) | ||
data = mx.nd.transpose(data, (2, 0, 1)) | ||
data = data.astype(np.float32) / 128.0 - 1 | ||
return data, label | ||
|
||
|
||
def get_training_data(batch_size): | ||
""" helper function to get dataloader""" | ||
return gluon.data.DataLoader( | ||
CIFAR10(train=True, transform=transformer), | ||
batch_size=batch_size, shuffle=True, last_batch='discard') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,138 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
|
||
# This example is inspired by https://github.com/jason71995/Keras-GAN-Library, | ||
# https://github.com/kazizzad/DCGAN-Gluon-MxNet/blob/master/MxnetDCGAN.ipynb | ||
# https://github.com/apache/incubator-mxnet/blob/master/example/gluon/dcgan.py | ||
|
||
import mxnet as mx | ||
from mxnet import nd | ||
from mxnet import gluon | ||
from mxnet.gluon import Block | ||
|
||
|
||
EPSILON = 1e-08 | ||
POWER_ITERATION = 1 | ||
|
||
class SNConv2D(Block): | ||
""" Customized Conv2D to feed the conv with the weight that we apply spectral normalization """ | ||
|
||
def __init__(self, num_filter, kernel_size, | ||
strides, padding, in_channels, | ||
ctx=mx.cpu(), iterations=1): | ||
|
||
super(SNConv2D, self).__init__() | ||
|
||
self.num_filter = num_filter | ||
self.kernel_size = kernel_size | ||
self.strides = strides | ||
self.padding = padding | ||
self.in_channels = in_channels | ||
self.iterations = iterations | ||
self.ctx = ctx | ||
|
||
with self.name_scope(): | ||
# init the weight | ||
self.weight = self.params.get('weight', shape=( | ||
num_filter, in_channels, kernel_size, kernel_size)) | ||
self.u = self.params.get( | ||
'u', init=mx.init.Normal(), shape=(1, num_filter)) | ||
|
||
def _spectral_norm(self): | ||
""" spectral normalization """ | ||
w = self.params.get('weight').data(self.ctx) | ||
w_mat = nd.reshape(w, [w.shape[0], -1]) | ||
|
||
_u = self.u.data(self.ctx) | ||
_v = None | ||
|
||
for _ in range(POWER_ITERATION): | ||
_v = nd.L2Normalization(nd.dot(_u, w_mat)) | ||
_u = nd.L2Normalization(nd.dot(_v, w_mat.T)) | ||
|
||
sigma = nd.sum(nd.dot(_u, w_mat) * _v) | ||
if sigma == 0.: | ||
sigma = EPSILON | ||
|
||
self.params.setattr('u', _u) | ||
|
||
return w / sigma | ||
|
||
def forward(self, x): | ||
# x shape is batch_size x in_channels x height x width | ||
return nd.Convolution( | ||
data=x, | ||
weight=self._spectral_norm(), | ||
kernel=(self.kernel_size, self.kernel_size), | ||
pad=(self.padding, self.padding), | ||
stride=(self.strides, self.strides), | ||
num_filter=self.num_filter, | ||
no_bias=True | ||
) | ||
|
||
|
||
def get_generator(): | ||
""" construct and return generator """ | ||
g_net = gluon.nn.Sequential() | ||
with g_net.name_scope(): | ||
|
||
g_net.add(gluon.nn.Conv2DTranspose( | ||
channels=512, kernel_size=4, strides=1, padding=0, use_bias=False)) | ||
g_net.add(gluon.nn.BatchNorm()) | ||
g_net.add(gluon.nn.LeakyReLU(0.2)) | ||
|
||
g_net.add(gluon.nn.Conv2DTranspose( | ||
channels=256, kernel_size=4, strides=2, padding=1, use_bias=False)) | ||
g_net.add(gluon.nn.BatchNorm()) | ||
g_net.add(gluon.nn.LeakyReLU(0.2)) | ||
|
||
g_net.add(gluon.nn.Conv2DTranspose( | ||
channels=128, kernel_size=4, strides=2, padding=1, use_bias=False)) | ||
g_net.add(gluon.nn.BatchNorm()) | ||
g_net.add(gluon.nn.LeakyReLU(0.2)) | ||
|
||
g_net.add(gluon.nn.Conv2DTranspose( | ||
channels=64, kernel_size=4, strides=2, padding=1, use_bias=False)) | ||
g_net.add(gluon.nn.BatchNorm()) | ||
g_net.add(gluon.nn.LeakyReLU(0.2)) | ||
|
||
g_net.add(gluon.nn.Conv2DTranspose(channels=3, kernel_size=4, strides=2, padding=1, use_bias=False)) | ||
g_net.add(gluon.nn.Activation('tanh')) | ||
|
||
return g_net | ||
|
||
|
||
def get_descriptor(ctx): | ||
""" construct and return descriptor """ | ||
d_net = gluon.nn.Sequential() | ||
with d_net.name_scope(): | ||
|
||
d_net.add(SNConv2D(num_filter=64, kernel_size=4, strides=2, padding=1, in_channels=3, ctx=ctx)) | ||
d_net.add(gluon.nn.LeakyReLU(0.2)) | ||
|
||
d_net.add(SNConv2D(num_filter=128, kernel_size=4, strides=2, padding=1, in_channels=64, ctx=ctx)) | ||
d_net.add(gluon.nn.LeakyReLU(0.2)) | ||
|
||
d_net.add(SNConv2D(num_filter=256, kernel_size=4, strides=2, padding=1, in_channels=128, ctx=ctx)) | ||
d_net.add(gluon.nn.LeakyReLU(0.2)) | ||
|
||
d_net.add(SNConv2D(num_filter=512, kernel_size=4, strides=2, padding=1, in_channels=256, ctx=ctx)) | ||
d_net.add(gluon.nn.LeakyReLU(0.2)) | ||
|
||
d_net.add(SNConv2D(num_filter=1, kernel_size=4, strides=1, padding=0, in_channels=512, ctx=ctx)) | ||
|
||
return d_net |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,149 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
|
||
# This example is inspired by https://github.com/jason71995/Keras-GAN-Library, | ||
# https://github.com/kazizzad/DCGAN-Gluon-MxNet/blob/master/MxnetDCGAN.ipynb | ||
# https://github.com/apache/incubator-mxnet/blob/master/example/gluon/dcgan.py | ||
|
||
|
||
import os | ||
import random | ||
import logging | ||
import argparse | ||
|
||
from data import get_training_data | ||
from model import get_generator, get_descriptor | ||
from utils import save_image | ||
|
||
import mxnet as mx | ||
from mxnet import nd, autograd | ||
from mxnet import gluon | ||
|
||
# CLI | ||
parser = argparse.ArgumentParser( | ||
description='train a model for Spectral Normalization GAN.') | ||
parser.add_argument('--data-path', type=str, default='./data', | ||
help='path of data.') | ||
parser.add_argument('--batch-size', type=int, default=64, | ||
help='training batch size. default is 64.') | ||
parser.add_argument('--epochs', type=int, default=100, | ||
help='number of training epochs. default is 100.') | ||
parser.add_argument('--lr', type=float, default=0.0001, | ||
help='learning rate. default is 0.0001.') | ||
parser.add_argument('--lr-beta', type=float, default=0.5, | ||
help='learning rate for the beta in margin based loss. default is 0.5.') | ||
parser.add_argument('--use-gpu', action='store_true', | ||
help='use gpu for training.') | ||
parser.add_argument('--clip_gr', type=float, default=10.0, | ||
help='Clip the gradient by projecting onto the box. default is 10.0.') | ||
parser.add_argument('--z-dim', type=int, default=10, | ||
help='dimension of the latent z vector. default is 100.') | ||
opt = parser.parse_args() | ||
|
||
BATCH_SIZE = opt.batch_size | ||
Z_DIM = opt.z_dim | ||
NUM_EPOCHS = opt.epochs | ||
LEARNING_RATE = opt.lr | ||
BETA = opt.lr_beta | ||
OUTPUT_DIR = opt.data_path | ||
CTX = mx.gpu() if opt.use_gpu else mx.cpu() | ||
CLIP_GRADIENT = opt.clip_gr | ||
IMAGE_SIZE = 64 | ||
|
||
|
||
def facc(label, pred): | ||
""" evaluate accuracy """ | ||
pred = pred.ravel() | ||
label = label.ravel() | ||
return ((pred > 0.5) == label).mean() | ||
|
||
|
||
# setting | ||
mx.random.seed(random.randint(1, 10000)) | ||
logging.basicConfig(level=logging.DEBUG) | ||
|
||
# create output dir | ||
try: | ||
os.makedirs(opt.data_path) | ||
except OSError: | ||
pass | ||
|
||
# get training data | ||
train_data = get_training_data(opt.batch_size) | ||
|
||
# get model | ||
g_net = get_generator() | ||
d_net = get_descriptor(CTX) | ||
|
||
# define loss function | ||
loss = gluon.loss.SigmoidBinaryCrossEntropyLoss() | ||
|
||
# initialization | ||
g_net.collect_params().initialize(mx.init.Xavier(), ctx=CTX) | ||
d_net.collect_params().initialize(mx.init.Xavier(), ctx=CTX) | ||
g_trainer = gluon.Trainer( | ||
g_net.collect_params(), 'Adam', {'learning_rate': LEARNING_RATE, 'beta1': BETA, 'clip_gradient': CLIP_GRADIENT}) | ||
d_trainer = gluon.Trainer( | ||
d_net.collect_params(), 'Adam', {'learning_rate': LEARNING_RATE, 'beta1': BETA, 'clip_gradient': CLIP_GRADIENT}) | ||
g_net.collect_params().zero_grad() | ||
d_net.collect_params().zero_grad() | ||
# define evaluation metric | ||
metric = mx.metric.CustomMetric(facc) | ||
# initialize labels | ||
real_label = nd.ones(BATCH_SIZE, CTX) | ||
fake_label = nd.zeros(BATCH_SIZE, CTX) | ||
|
||
for epoch in range(NUM_EPOCHS): | ||
for i, (d, _) in enumerate(train_data): | ||
# update D | ||
data = d.as_in_context(CTX) | ||
noise = nd.normal(loc=0, scale=1, shape=( | ||
BATCH_SIZE, Z_DIM, 1, 1), ctx=CTX) | ||
with autograd.record(): | ||
# train with real image | ||
output = d_net(data).reshape((-1, 1)) | ||
errD_real = loss(output, real_label) | ||
metric.update([real_label, ], [output, ]) | ||
|
||
# train with fake image | ||
fake_image = g_net(noise) | ||
output = d_net(fake_image.detach()).reshape((-1, 1)) | ||
errD_fake = loss(output, fake_label) | ||
errD = errD_real + errD_fake | ||
errD.backward() | ||
metric.update([fake_label, ], [output, ]) | ||
|
||
d_trainer.step(BATCH_SIZE) | ||
# update G | ||
with autograd.record(): | ||
fake_image = g_net(noise) | ||
output = d_net(fake_image).reshape(-1, 1) | ||
errG = loss(output, real_label) | ||
errG.backward() | ||
|
||
g_trainer.step(BATCH_SIZE) | ||
|
||
# print log infomation every 100 batches | ||
if i % 100 == 0: | ||
name, acc = metric.get() | ||
logging.info('discriminator loss = %f, generator loss = %f, \ | ||
binary training acc = %f at iter %d epoch %d', | ||
nd.mean(errD).asscalar(), nd.mean(errG).asscalar(), acc, i, epoch) | ||
if i == 0: | ||
save_image(fake_image, epoch, IMAGE_SIZE, BATCH_SIZE, OUTPUT_DIR) | ||
|
||
metric.reset() |
Oops, something went wrong.