Skip to content

alibaba/UniFuse-Unidirectional-Fusion

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 

Repository files navigation

UniFuse (RAL+ICRA2021)

Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation, arXiv, Demo

Preparation

Installation

Environments

  • python 3.6
  • Pytorch >= 1.0.0
  • CUDA >= 9.0

Install requirements

pip install -r requirements.txt

Datasets

Please download the preferred datasets, i.e., Matterport3D, Stanford2D3D, 3D60 and PanoSUNCG. For Matterport3D, please preprocess it following M3D-README.md.

Training

UniFuse on Matterport3D

python train.py --data_path $DATA_PATH \
-dataset matterport3d \
--model_name Matterport3D_UniFuse \
--batch_size 6 \
--num_epochs 100 \
--height 512 \
--width 1024 \
--imagenet_pretrained \
--net UniFuse 

Equirectangular baseline on Matterport3D

python train.py --data_path $DATA_PATH \
-dataset matterport3d \
--model_name Matterport3D_Equi \
--batch_size 6 \
--num_epochs 100 \
--height 512 \
--width 1024 \
--imagenet_pretrained \
--net Equi 

It is similar for other datasets.

Evaluation

Pre-trained models

The pre-trained models of UniFuse for 4 datasets are available, Matterport3D, Stanford2D3D, 3D60 and PanoSUNCG.

Test on a pre-trained model

python evaluate.py  --data_path $DATA_PATH --dataset matterport3d --load_weights_folder $MODEL_PATH 

Citation

Please cite our paper if you find our work useful in your research.

@article{jiang2021unifuse,
      title={UniFuse: Unidirectional Fusion for 360$^{\circ}$ Panorama Depth Estimation}, 
      author={Hualie Jiang and Zhe Sheng and Siyu Zhu and Zilong Dong and Rui Huang},
	  journal={IEEE Robotics and Automation Letters},
	  year={2021},
	  publisher={IEEE}
}