Skip to content

alexanderjaus/APEx

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Anatomy-guided Pathology Segmentation

An Investigation on how to incorporate Anatomical Knowledge for Pathology Segmentation (MICCAI'24)

Figure

Installation

Requirements

  • Linux or macOS with Python ≥ 3.6
  • PyTorch ≥ 1.9 and torchvision that matches the PyTorch installation. Install them together at pytorch.org to make sure of this. Note, please check PyTorch version matches that is required by Detectron2.
  • Detectron2: follow Detectron2 installation instructions.
  • pip install -r requirements.txt

CUDA kernel for MSDeformAttn

After preparing the required environment, run the following command to compile CUDA kernel for MSDeformAttn:

CUDA_HOME must be defined and points to the directory of the installed CUDA toolkit.

cd model/apex/modeling/pixel_decoder/ops
sh make.sh

Dataset Preparation for PET/CT

To run the model within the PET/CT domain, we rely on two datasets: AutoPET providing lesion annotations and Atlas providing anatomical annotations. Please download the respective datasets.

After preparing the original datasets, the Atlas dataset should look like as shown below. Note that you do not need the image folder for the Atlas_dataset_V1. The folder with the labels are sufficient.

Atlas_dataset_V1
    ├── images
    │   ├── AutoPET_0af7ffe12a_96698_0000.nii.gz
    │   ├── AutoPET_0b57b247b6_42966_0000.nii.gz
    │   ├── AutoPET_0b98dbe00d_83616_0000.nii.gz
    │   └── AutoPET_0c13e4df10_89759_0000.nii.gz
    |   └── AutoPET_0c13e4df10_89759_0000.nii.gz
    └── label
        ├── AutoPET_0af7ffe12a_96698.nii.gz
        ├── AutoPET_0b57b247b6_42966.nii.gz
        ├── AutoPET_0b98dbe00d_83616.nii.gz
        └── AutoPET_0c13e4df10_89759.nii.gz

And the AutoPET dataset should look like this

AutoPET_2
    ├── Clinical Metadata FDG PET_CT Lesions.csv
    └── FDG-PET-CT-Lesions
        ├── PETCT_0011f3deaf
        │   └── 03-23-2003-NA-PET-CT Ganzkoerper  primaer mit KM-10445
        │       ├── CT.nii.gz
        │       ├── CTres.nii.gz
        │       ├── PET.nii.gz
        │       ├── SEG.nii.gz
        │       └── SUV.nii.gz
        ├── PETCT_01140d52d8
        ...

To generate the Apex training dataset, we provide a skript that assumes the two aforementioned datasets are available. The generate_apex_petct_training_dataset.py script is used to create a training dataset for PET/CT images by processing and pooling data from various sources. This script handles the creation of volumetric datasets, resampling of anatomy labels, slicing of volumetric images into 2D slices, and pooling of data into a structured format.

Usage

python generate_apex_petct_training_dataset.py <autopet_path> <atlas_labels> <pet_atlas_complete> <slices_dataset_target> <metadata_csv_path> [--cleanup]

Arguments

  • autopet_path: Path to the AutoPET root directory.
  • atlas_labels: Path to the atlas labels directory (e.g Atlas_dataset_V1/label).
  • pet_atlas_complete: Path to the directory where the volumetric Apex dataset will be created.
  • slices_dataset_target: Path to the directory where the 2D slices dataset will be created.
  • metadata_csv_path: Path to the metadata CSV file, present in the AutoPET directory.
  • --cleanup: Optional flag to remove the original sliced image files after pooling. Default is True.

The script does not delete the volumetric pet_atlas_complete dataset after creation, it however is safe to delete, as Apex works on sliced volumetric images.

Train your own Model

To train your own model using the provided scripts, follow these steps:

  1. Prepare the Dataset:

    • Ensure that you have generated the training dataset using the generate_apex_petct_training_dataset.py script as described above.
  2. Configure Training Parameters:

    • Edit the configuration file (e.g., config.yaml) to set the desired training parameters such as learning rate, batch size, number of epochs, etc. We provide a default example in in training_skripts/petct_configs/petct_config_anatomical_true_cross_attention.yaml
    • Set the environment variable "DETECTRON_DATASET":"<slices_dataset_target>"
  3. Run the Training Script:

    • Use the following command to start the training process:
    python train_model.py --config path/to/config.yaml --data_dir path/to/slices_dataset_target --output_dir path/to/output

Arguments

  • --eval-only: Optional flag to only evaluate a model checkpoint.
  • --config: Path to config file for the training.
  • --num-gpus: Number of GPUs to run distributed training on.

The project uses Hydra for configuration, allowing you to append configs directly to the main command when running a script. Typically the output directory and the current data split on which the model should be trained should be defined. This is shown via an example below.

Example

python train_model.py --config training_skripts/petct_configs/petct_config_anatomical_true_cross_attention.yaml OUTPUT_DIR output/debug SOLVER.IMS_PER_BATCH 8 split 1

Project status

  • Provide Code for PET/CT
  • Provide Pretrained PET/CT Models
  • Provide Code for X-Ray domain
  • Provide Pretrained X-Ray Models

Acknowledgements

We thank the authors of Mask2Former as we heavily build upon their repository

Please consider citing our work when you the code of this repository.

@inproceedings{jaus2024anatomy,
  title={Anatomy-guided Pathology Segmentation},
  author={Jaus, Alexander and Seibold, Constantin and Rei{\ss}, Simon and Heine, Lukas and Schily, Anton and Kim, Moon and Bahnsen, Fin Hendrik and Herrmann, Ken and Stiefelhagen, Rainer and Kleesiek, Jens},
  booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention},
  pages={3--13},
  year={2024},
  organization={Springer}
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published