Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 5 additions & 5 deletions autoemulate/experimental/emulators/__init__.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
from .base import Emulator
from .ensemble import EnsembleMLP, EnsembleMLPDropout
from .gaussian_process.exact import GaussianProcessExact, GaussianProcessExactCorrelated
from .gaussian_process.exact import GaussianProcess, GaussianProcessCorrelated
from .lightgbm import LightGBM

# from .neural_processes.conditional_neural_process import CNPModule
Expand All @@ -11,8 +11,8 @@
from .transformed.base import TransformedEmulator

ALL_EMULATORS: list[type[Emulator]] = [
GaussianProcessExact,
GaussianProcessExactCorrelated,
GaussianProcess,
GaussianProcessCorrelated,
LightGBM,
# CNPModule,
SupportVectorMachine,
Expand Down Expand Up @@ -57,8 +57,8 @@ def get_emulator_class(name: str) -> type[Emulator]:
"MLP",
"EnsembleMLP",
"EnsembleMLPDropout",
"GaussianProcessExact",
"GaussianProcessExactCorrelated",
"GaussianProcess",
"GaussianProcessCorrelated",
"LightGBM",
"RadialBasisFunctions",
"RandomForest",
Expand Down
4 changes: 2 additions & 2 deletions autoemulate/experimental/emulators/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -72,8 +72,8 @@ def model_name(cls) -> str:
def short_name(cls) -> str:
"""
Take the capital letters of the class name and return them as a lower case
string. For example, if the class name is `GaussianProcessExact`, this will
return `gpe`.
string. For example, if the class name is `GaussianProcess`, this will return
`gp`.
"""
return "".join([c for c in cls.__name__ if c.isupper()]).lower()

Expand Down
12 changes: 6 additions & 6 deletions autoemulate/experimental/emulators/gaussian_process/exact.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@
from .mean import constant_mean, linear_mean, poly_mean, zero_mean


class GaussianProcessExact(GaussianProcessEmulator, gpytorch.models.ExactGP):
class GaussianProcess(GaussianProcessEmulator, gpytorch.models.ExactGP):
"""
Gaussian Process Exact Emulator

Expand Down Expand Up @@ -75,7 +75,7 @@ def __init__( # noqa: PLR0913 allow too many arguments since all currently requ
**kwargs,
):
"""
Initialize the GaussianProcessExact emulator.
Initialize the GaussianProcess emulator.

Parameters
----------
Expand Down Expand Up @@ -274,7 +274,7 @@ def _predict(self, x: TensorLike, with_grad: bool):

@staticmethod
def get_tune_config():
scheduler_config = GaussianProcessExact.scheduler_config()
scheduler_config = GaussianProcess.scheduler_config()
return {
"mean_module_fn": [
constant_mean,
Expand All @@ -300,11 +300,11 @@ def get_tune_config():
}


class GaussianProcessExactCorrelated(GaussianProcessExact):
class GaussianProcessCorrelated(GaussianProcess):
"""
Multioutput exact GP implementation with correlated task covariance.

This class extends the `GaussianProcessExact` to support correlated task covariance
This class extends the `GaussianProcess` to support correlated task covariance
by using a `MultitaskKernel` with a rank-1 covariance factor and a `MultitaskMean`
for the mean function.

Expand All @@ -331,7 +331,7 @@ def __init__( # noqa: PLR0913 allow too many arguments since all currently requ
**kwargs,
):
"""
Initialize the GaussianProcessExactCorrelated emulator.
Initialize the GaussianProcessCorrelated emulator.

Parameters
----------
Expand Down
8 changes: 4 additions & 4 deletions autoemulate/experimental/exploratory/compare_transforms.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -2,13 +2,13 @@
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"id": "702bb87d",
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"from autoemulate.experimental.emulators import GaussianProcessExact\n",
"from autoemulate.experimental.emulators import GaussianProcess\n",
"from autoemulate.experimental.emulators.random_forest import RandomForest\n",
"from autoemulate.experimental.emulators.transformed.base import TransformedEmulator\n",
"from autoemulate.experimental.transforms import PCATransform, VAETransform, StandardizeTransform\n",
Expand Down Expand Up @@ -52,15 +52,15 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": null,
"id": "d67372dd",
"metadata": {},
"outputs": [],
"source": [
"ae = AutoEmulate(\n",
" x,\n",
" y,\n",
" models=[GaussianProcessExact, RandomForest],\n",
" models=[GaussianProcess, RandomForest],\n",
" x_transforms_list=[[], [StandardizeTransform(), PCATransform(n_components=5)]],\n",
" y_transforms_list=[[], [StandardizeTransform(), PCATransform(n_components=1)]]\n",
")\n"
Expand Down
6 changes: 2 additions & 4 deletions autoemulate/experimental/exploratory/hmc_refactor.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -16,9 +16,7 @@
"import torch\n",
"\n",
"from autoemulate.experimental.simulations.projectile import Projectile, ProjectileMultioutput\n",
"from autoemulate.experimental.emulators.gaussian_process.exact import (\n",
" GaussianProcessExact,\n",
")"
"from autoemulate.experimental.emulators import GaussianProcess"
]
},
{
Expand All @@ -38,7 +36,7 @@
"metadata": {},
"outputs": [],
"source": [
"gp = GaussianProcessExact(x, y)\n",
"gp = GaussianProcess(x, y)\n",
"gp.fit(x, y)"
]
},
Expand Down
12 changes: 6 additions & 6 deletions autoemulate/experimental/exploratory/transforms.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@
"outputs": [],
"source": [
"import torch\n",
"from autoemulate.experimental.emulators import GaussianProcessExact\n",
"from autoemulate.experimental.emulators import GaussianProcess\n",
"from autoemulate.experimental.emulators.random_forest import RandomForest\n",
"from autoemulate.experimental.emulators.transformed.base import TransformedEmulator\n",
"from autoemulate.experimental.transforms import PCATransform, VAETransform, StandardizeTransform\n",
Expand Down Expand Up @@ -85,7 +85,7 @@
" y=y,\n",
" x_transforms=[PCATransform(n_components=4), VAETransform(latent_dim=2)],\n",
" y_transforms=[StandardizeTransform(), PCATransform(n_components=1)],\n",
" model=GaussianProcessExact,\n",
" model=GaussianProcess,\n",
" epochs=100,\n",
")"
]
Expand Down Expand Up @@ -143,7 +143,7 @@
"from autoemulate.experimental.model_selection import r2_metric\n",
"\n",
"\n",
"for model in [GaussianProcessExact, RandomForest]:\n",
"for model in [GaussianProcess, RandomForest]:\n",
" # Create transformed emulator with GP\n",
" emulator = TransformedEmulator(\n",
" x=x,\n",
Expand Down Expand Up @@ -223,7 +223,7 @@
" x, y = make_data(n_targets=5, n_samples=200)\n",
" t.fit(y)\n",
" z = t(y)\n",
" gp = GaussianProcessExact(x, z, standardize_x=True, standardize_y=True)\n",
" gp = GaussianProcess(x, z, standardize_x=True, standardize_y=True)\n",
" gp.fit(x, z)\n",
" z_pred = gp.predict(x[: x.shape[0] // 2])\n",
" assert isinstance(z_pred, GaussianLike)\n",
Expand Down Expand Up @@ -282,7 +282,7 @@
" y=y,\n",
" y_transforms=[t],\n",
" x_transforms=[],\n",
" model=GaussianProcessExact,\n",
" model=GaussianProcess,\n",
" epochs=50,\n",
" n_samples=n_samples,\n",
" full_covariance=True,\n",
Expand Down Expand Up @@ -324,7 +324,7 @@
" y=y,\n",
" x_transforms=[StandardizeTransform()],\n",
" y_transforms=[StandardizeTransform(), t],\n",
" model=GaussianProcessExact,\n",
" model=GaussianProcess,\n",
" epochs=50,\n",
" n_samples=n_samples,\n",
" full_covariance=True,\n",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -148,7 +148,7 @@
"metadata": {},
"outputs": [],
"source": [
"from autoemulate.experimental.emulators.gaussian_process.exact import GaussianProcessExact\n",
"from autoemulate.experimental.emulators.gaussian_process.exact import GaussianProcess\n",
"from autoemulate.experimental.emulators.gaussian_process.kernel import rbf_plus_constant\n",
"from autoemulate.experimental.emulators.gaussian_process.mean import constant_mean\n",
"from autoemulate.experimental.emulators.transformed.base import TransformedEmulator\n",
Expand All @@ -162,7 +162,7 @@
"em = TransformedEmulator(\n",
" x,\n",
" y,\n",
" model= GaussianProcessExact,\n",
" model= GaussianProcess,\n",
" x_transforms=[StandardizeTransform()],\n",
" y_transforms=[\n",
" StandardizeTransform(),\n",
Expand Down
26 changes: 13 additions & 13 deletions docs/experimental/tutorials/simulator/02_active_learning.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -69,7 +69,7 @@
"# Import core classes from the source code.\n",
"from autoemulate.experimental.learners import stream\n",
"from autoemulate.experimental.simulations.base import Simulator\n",
"from autoemulate.experimental.emulators.gaussian_process.exact import GaussianProcessExact\n",
"from autoemulate.experimental.emulators import GaussianProcess\n",
"from autoemulate.experimental.types import GaussianLike\n",
"\n",
"warnings.filterwarnings('ignore')\n",
Expand Down Expand Up @@ -205,7 +205,7 @@
"x_train = simulator.sample_inputs(25).sort(dim=0).values\n",
"y_train = simulator.forward_batch(x_train)\n",
"\n",
"emulator = GaussianProcessExact(x_train, y_train)\n",
"emulator = GaussianProcess(x_train, y_train)\n",
"emulator.fit(x_train, y_train)\n",
"\n",
"# Test emulator\n",
Expand Down Expand Up @@ -259,7 +259,7 @@
"\n",
"x_train = simulator.sample_inputs(5)\n",
"y_train = simulator.forward_batch(x_train)\n",
"emulator = GaussianProcessExact(x_train, y_train)\n",
"emulator = GaussianProcess(x_train, y_train)\n",
"\n",
"# Learner itself!\n",
"learner = stream.Random(\n",
Expand Down Expand Up @@ -458,33 +458,33 @@
" x_train = simulator.sample_inputs(n_initial_samples)\n",
" y_train = simulator.forward_batch(x_train)\n",
" yield stream.Random(\n",
" simulator=simulator, emulator=GaussianProcessExact(x_train, y_train),\n",
" simulator=simulator, emulator=GaussianProcess(x_train, y_train),\n",
" x_train=x_train, y_train=y_train,\n",
" p_query=0.25, show_progress=show_progress\n",
" )\n",
" if not adaptive_only:\n",
" yield stream.Distance(\n",
" simulator=simulator, emulator=GaussianProcessExact(x_train, y_train),\n",
" simulator=simulator, emulator=GaussianProcess(x_train, y_train),\n",
" x_train=x_train, y_train=y_train,\n",
" threshold=0.5, show_progress=show_progress\n",
" )\n",
" yield stream.A_Optimal(\n",
" simulator=simulator, emulator=GaussianProcessExact(x_train, y_train),\n",
" simulator=simulator, emulator=GaussianProcess(x_train, y_train),\n",
" x_train=x_train, y_train=y_train,\n",
" threshold=1.0, show_progress=show_progress\n",
" )\n",
" yield stream.D_Optimal(\n",
" simulator=simulator, emulator=GaussianProcessExact(x_train, y_train),\n",
" simulator=simulator, emulator=GaussianProcess(x_train, y_train),\n",
" x_train=x_train, y_train=y_train,\n",
" threshold=-4.2, show_progress=show_progress\n",
" )\n",
" yield stream.E_Optimal(\n",
" simulator=simulator, emulator=GaussianProcessExact(x_train, y_train),\n",
" simulator=simulator, emulator=GaussianProcess(x_train, y_train),\n",
" x_train=x_train, y_train=y_train,\n",
" threshold=1.0, show_progress=show_progress\n",
" )\n",
" yield stream.Adaptive_Distance(\n",
" simulator=simulator, emulator=GaussianProcessExact(x_train, y_train),\n",
" simulator=simulator, emulator=GaussianProcess(x_train, y_train),\n",
" x_train=x_train, y_train=y_train,\n",
" threshold=0.5, Kp=1.0, Ki=1.0, Kd=1.0,\n",
" key=\"rate\", target=0.25,\n",
Expand All @@ -493,7 +493,7 @@
" window_size=10, show_progress=show_progress\n",
" )\n",
" yield stream.Adaptive_A_Optimal(\n",
" simulator=simulator, emulator=GaussianProcessExact(x_train, y_train),\n",
" simulator=simulator, emulator=GaussianProcess(x_train, y_train),\n",
" x_train=x_train, y_train=y_train,\n",
" threshold=1e-1, Kp=2.0, Ki=1.0, Kd=2.0,\n",
" key=\"rate\", target=0.25,\n",
Expand All @@ -502,7 +502,7 @@
" window_size=10, show_progress=show_progress\n",
" )\n",
" yield stream.Adaptive_D_Optimal(\n",
" simulator=simulator, emulator=GaussianProcessExact(x_train, y_train),\n",
" simulator=simulator, emulator=GaussianProcess(x_train, y_train),\n",
" x_train=x_train, y_train=y_train,\n",
" threshold=-4.0, Kp=2.0, Ki=1.0, Kd=2.0,\n",
" key=\"rate\", target=0.25,\n",
Expand All @@ -511,7 +511,7 @@
" window_size=10, show_progress=show_progress\n",
" )\n",
" yield stream.Adaptive_E_Optimal(\n",
" simulator=simulator, emulator=GaussianProcessExact(x_train, y_train),\n",
" simulator=simulator, emulator=GaussianProcess(x_train, y_train),\n",
" x_train=x_train, y_train=y_train,\n",
" threshold=0.75 if isinstance(simulator, Sin) else 1000, \n",
" Kp=2.0, Ki=1.0, Kd=2.0,\n",
Expand Down Expand Up @@ -776,7 +776,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.7"
"version": "3.12.11"
}
},
"nbformat": 4,
Expand Down
10 changes: 4 additions & 6 deletions docs/experimental/tutorials/simulator/03_history_matching.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -2,13 +2,11 @@
"cells": [
{
"cell_type": "code",
"execution_count": 9,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from autoemulate.experimental.emulators.gaussian_process.exact import (\n",
" GaussianProcessExact,\n",
")\n",
"from autoemulate.experimental.emulators import GaussianProcess\n",
"from autoemulate.experimental.compare import AutoEmulate\n",
"from autoemulate.experimental.simulations.epidemic import Epidemic\n",
"from autoemulate.experimental.calibration.history_matching import HistoryMatchingWorkflow\n",
Expand Down Expand Up @@ -73,7 +71,7 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": null,
"metadata": {},
"outputs": [
{
Expand All @@ -85,7 +83,7 @@
}
],
"source": [
"ae = AutoEmulate(x, y, models=[GaussianProcessExact])"
"ae = AutoEmulate(x, y, models=[GaussianProcess])"
]
},
{
Expand Down
10 changes: 4 additions & 6 deletions docs/experimental/tutorials/tasks/02_history_matching.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -2,13 +2,11 @@
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from autoemulate.experimental.emulators.gaussian_process.exact import (\n",
" GaussianProcessExact,\n",
")\n",
"from autoemulate.experimental.emulators import GaussianProcess\n",
"from autoemulate.experimental.compare import AutoEmulate\n",
"from autoemulate.experimental.simulations.projectile import Projectile\n",
"from autoemulate.experimental.calibration.history_matching import HistoryMatching"
Expand Down Expand Up @@ -71,7 +69,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": null,
"metadata": {},
"outputs": [
{
Expand All @@ -83,7 +81,7 @@
}
],
"source": [
"ae = AutoEmulate(x, y, models=[GaussianProcessExact])"
"ae = AutoEmulate(x, y, models=[GaussianProcess])"
]
},
{
Expand Down
Loading