Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

train & eval scripts #26

Merged
merged 5 commits into from
Nov 26, 2024
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -167,3 +167,6 @@ local_notebooks

# test caches
tests/testdata/*/*/cache*

# tensorboard logs
logs/
18 changes: 18 additions & 0 deletions config/topic_classifier_training.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
data_root: /path/to/data

training_args:
output_dir: my_topic_classifier
learning_rate: 0.00002
per_device_train_batch_size: 32
per_device_eval_batch_size: 32
num_train_epochs: 2
weight_decay: 0.01
eval_strategy: "steps"
save_strategy: "steps"
eval_steps: 500
save_steps: 500
logging_steps: 50
load_best_model_at_end: True
eval_on_start: True
report_to: "tensorboard"
seed: 42
6 changes: 5 additions & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -37,14 +37,18 @@ dependencies = [
"torch",
"torcheval",
"pillow",
"unbabel-comet"
"unbabel-comet",
"accelerate",
"tensorboard",
"scikit-learn"
]

[project.optional-dependencies]
dev = [
"pytest >=6",
"pytest-cov >=3",
"pre-commit",
"mypy",
]

[project.urls]
Expand Down
31 changes: 31 additions & 0 deletions scripts/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
# Scripts

## create_test_ds.py

Create dataset used in testing. This has been run and output stored in GitHub.

## train_topic_classifier.py

Train a topic classifier over MultiEURLEX data.

Sample config for training stored at [../config/topic_classifier_training.yaml](../config/topic_classifier_training.yml). Edit this first.

run with (from project root):
```bash
python scripts/train_topic_classifier.py -c configs/topic_classifier_training.yml
```

## eval_topic_classifier.py

Evaluate a trained topic classifier over MultiEURLEX data.

e.g. from project root:
```bash
python scripts/eval_topic_classifier.py \
--ckpt_path ./path/to/output/checkpoint-3286 \
--data_root ./data \
--batch_size 32 \
--eval_output_dir ./path/to/output \
--report_to tensorboard \
--dataset_name validation # change to "test" for test set evaluation
```
63 changes: 63 additions & 0 deletions scripts/eval_topic_classifier.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
from jsonargparse import cli
from transformers import (
DataCollatorWithPadding,
DistilBertForSequenceClassification,
DistilBertTokenizer,
Trainer,
TrainingArguments,
)

from arc_spice.data.multieurlex_utils import load_multieurlex
from arc_spice.topic.utils import compute_metrics, preprocess_function


def main(
ckpt_path: str,
data_root: str,
batch_size: int,
eval_output_dir: str,
report_to: str = "tensorboard",
dataset_name: str = "validation",
) -> None:
model = DistilBertForSequenceClassification.from_pretrained(ckpt_path)
tokenizer = DistilBertTokenizer.from_pretrained(ckpt_path)

dataset_dict, metadata = load_multieurlex(
data_dir=data_root, level=1, languages=["en"]
)
id2label = dict(enumerate(metadata["class_labels"]))

dataset = dataset_dict[dataset_name]

tokenized_dataset = dataset.map(
preprocess_function,
batched=True,
fn_kwargs={"tokenizer": tokenizer, "id2label": id2label},
remove_columns=["text", "labels"],
)

model = model.eval()

data_collator = DataCollatorWithPadding(tokenizer=tokenizer)

training_args = TrainingArguments(
output_dir=eval_output_dir,
per_device_eval_batch_size=batch_size,
report_to=report_to,
)

trainer = Trainer(
model=model,
args=training_args,
train_dataset=None,
eval_dataset=tokenized_dataset,
processing_class=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
)

trainer.evaluate()


if __name__ == "__main__":
cli.CLI(main, as_positional=False)
59 changes: 59 additions & 0 deletions scripts/train_topic_classifier.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
# finetune DistilBERT for topic classification over MultiEURLEX dataset


from jsonargparse import cli
from transformers import (
DataCollatorWithPadding,
DistilBertForSequenceClassification,
DistilBertTokenizer,
Trainer,
TrainingArguments,
)

from arc_spice.data.multieurlex_utils import load_multieurlex
from arc_spice.topic.utils import compute_metrics, preprocess_function


def main(data_root: str, training_args: dict):
dataset, metadata = load_multieurlex(data_dir=data_root, level=1, languages=["en"])

id2label = dict(enumerate(metadata["class_labels"]))
label2id = {v: k for k, v in id2label.items()}

model = DistilBertForSequenceClassification.from_pretrained(
"distilbert/distilbert-base-uncased",
num_labels=len(id2label),
id2label=id2label,
label2id=label2id,
problem_type="multi_label_classification",
)
tokenizer = DistilBertTokenizer.from_pretrained(
"distilbert/distilbert-base-uncased"
)

tokenized_dataset = dataset.map(
preprocess_function,
batched=True,
fn_kwargs={"tokenizer": tokenizer, "id2label": id2label},
remove_columns=["text", "labels"],
)

data_collator = DataCollatorWithPadding(tokenizer=tokenizer)

training_args = TrainingArguments(**training_args)

trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset["train"],
eval_dataset=tokenized_dataset["validation"],
processing_class=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
)

trainer.train()


if __name__ == "__main__":
cli.CLI(main)
22 changes: 22 additions & 0 deletions src/arc_spice/topic/utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
import torch
from sklearn.metrics import hamming_loss, zero_one_loss
from transformers import DistilBertTokenizer


def preprocess_function(
examples, tokenizer: DistilBertTokenizer, id2label: dict[str, int]
):
output = tokenizer(examples["text"], truncation=True, padding=True)
labels = torch.zeros((len(examples["labels"]), len(id2label)), dtype=torch.float32)
for i, label in enumerate(examples["labels"]):
labels[i][label] = 1.0
output["label"] = labels
return output


def compute_metrics(eval_preds):
logits, labels = eval_preds
preds = (torch.sigmoid(torch.from_numpy(logits)) > 0.5).numpy().astype(int)
zo_acc = 1 - zero_one_loss(labels, preds)
ham_acc = 1 - hamming_loss(labels, preds)
return {"zero_one_acc": zo_acc, "hamming_acc": ham_acc}
Loading