Dataproc templates are an effort to solve simple, but large, in-Cloud data tasks, including data import/export/backup/restore and bulk API operations. The technology under the hood which makes these operations possible is the serverless spark functionality based on Google Cloud Dataproc service.
Google is providing this collection of pre-implemented Dataproc templates as a reference and to provide easy customization for developers wanting to extend their functionality.
- Java 8
- Maven 3
-
Clone this repository:
git clone https://github.com/GoogleCloudPlatform/java-docs-samples.git
-
Configure required properties at resources/template.properties
-
Obtain authentication credentials.
Create local credentials by running the following command and following the oauth2 flow (read more about the command [here][auth_command]):
gcloud auth application-default login
Or manually set the
GOOGLE_APPLICATION_CREDENTIALS
environment variable to point to a service account key JSON file path.Learn more at [Setting Up Authentication for Server to Server Production Applications][ADC].
Note: Application Default Credentials is able to implicitly find the credentials as long as the application is running on Compute Engine, Kubernetes Engine, App Engine, or Cloud Functions.
-
Format Code [Optional]
From either the root directory or v2/ directory, run:
mvn spotless:apply
This will format the code and add a license header. To verify that the code is formatted correctly, run:
mvn spotless:check
The directory to run the commands from is based on whether the changes are under v2/ or not.
-
Building the Project
Build the entire project using the maven compile command.
mvn clean install
-
Executing a Template File
Once the template is staged on Google Cloud Storage, it can then be executed using the gcloud CLI tool. The runtime parameters required by the template can be passed in the parameters field via comma-separated list of
paramName=Value
.bin/start.sh gs://dataproc-templates/jars \ gcp-project \ gcp-region \ network-subnet \ persistent-history-server[Optional] \ hivetogcs
bin/start.sh gs://dataproc-templates/jars \ gcp-project \ gcp-region \ network-subnet \ persistent-history-server[Optional] \ spannertogcs
Below flow diagram shows execution flow for Dataproc templates:
See the contributing instructions to get started contributing.
All solutions within this repository are provided under the Apache 2.0 license. Please see the LICENSE file for more detailed terms and conditions.
This repository and its contents are not an official Google Product.
Questions, issues, and comments should be directed to [email protected].