Please cite the following paper if you use our code.
Laha Ale, Scott A. King, and Ning Zhang, "Deep Bayesian Learning for Car Hacking Detection", Bayesian Deep Learning Workshop, 35th Conference on Neural Information Processing Systems
bibtex for citing the paper:
@InProceedings{aleneurips2021, title = {Deep Bayesian Learning for Car Hacking Detection, author = {Laha Ale, Scott King, and Ning Zhang}, booktitle = {Bayesian Deep Learning Workshop, 35th Conference on Neural Information Processing Systems}, year = {2021}, month = {6--12 Dec} }
- Request data by access Car-Hacking Dataset for the intrusion detection
- Download the data files and save them into
data
folder
pip install pandas
pip install numpy
pip install matplotlib
pip install sklearn
pip install tensorflow-gpu
pip install --upgrade tensorflow-probability
pip install pandas
pip install numpy
pip install matplotlib
pip install sklearn
conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c nvidia
pip install pyro-ppl
pip install gpytorch
One way to process is: On linux run the follow code to convert txt file format to csv file
Original format:
Timestamp: 1479121500.969313 ID: 0140 000 DLC: 8 00 00 00 00 1a 00 24 ee
Expected format:
1479121500.969313,0140,8,00,00,00,00,1a,00,24,ee
sed -i 's/Timestamp: //g' normal_run_data.txt
sed -i 's/ ID: /,/g' normal_run_data.txt
sed -i 's/ 000 DLC: /,/g' normal_run_data.txt
sed -i 's/ /,/g' normal_run_data.txt
sed -i 's/ /,/g' normal_run_data.txt