A declarative python library for the Nebulous runtime
pip install nebulous-shCreate a pytorch container on runpod with 1 A100 GPU
from nebulous import Container, V1EnvVar
container = Container(
name="pytorch-example",
namespace="test",
image="pytorch/pytorch:latest",
platform="runpod",
env=[V1EnvVar(name="MY_ENV_VAR", value="my-value")],
command="nvidia-smi",
accelerators=["1:A100_SXM"],
proxy_port=8080,
)
while container.status.status.lower() != "running":
print(f"Container '{container.metadata.name}' is not running, it is '{container.status.status}', waiting...")
time.sleep(1)
print(f"Container '{container.metadata.name}' is running")
print(f"You can access the container at {container.status.tailnet_url}")Run a python function as a stream processor.
from nebulous import Message, processor
from pydantic import BaseModel
class MyInput(BaseModel):
a: str
b: int
@processor(image="python:3.10-slim", accelerators=["1:A100_SXM"])
def my_function(msg: Message[MyInput]):
return msg
msg = MyInput(a="foo", b=1)
result = my_function(msg)
print(result)Please open an issue or a PR to contribute to the project.
make test