-
Notifications
You must be signed in to change notification settings - Fork 259
[ add ] Pointwise lifting of algebra to Data.Vec.Functional (Functional vector module #1945 redux) #2817
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: master
Are you sure you want to change the base?
[ add ] Pointwise lifting of algebra to Data.Vec.Functional (Functional vector module #1945 redux) #2817
Changes from all commits
3cf9d5a
c36797b
e67c13e
e8de375
743ae6b
ee19d44
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,127 @@ | ||
| ------------------------------------------------------------------------ | ||
| -- The Agda standard library | ||
| -- | ||
| -- Some VecF.Vector-related module Definitions | ||
| ------------------------------------------------------------------------ | ||
|
|
||
| {-# OPTIONS --cubical-compatible --safe #-} | ||
|
|
||
| module Data.Vec.Functional.Algebra.Base where | ||
|
|
||
| open import Level using (Level; suc; _⊔_) | ||
| open import Function using (_$_) | ||
| open import Data.Nat using (ℕ) | ||
| open import Data.Fin using (Fin) | ||
| import Data.Vec.Functional as VecF | ||
| open import Algebra.Core | ||
| open import Algebra.Bundles | ||
|
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
|
||
| open import Algebra.Module | ||
| open import Relation.Binary using (Rel) | ||
| import Data.Vec.Functional.Relation.Binary.Pointwise as Pointwise | ||
|
|
||
| private variable | ||
| a ℓ : Level | ||
| A : Set a | ||
| n : ℕ | ||
|
|
||
| ------------------------------------------------------------------------ | ||
| -- VecF.Vector-lifted raw structures | ||
|
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Same comment. I would be tempted to go with just "Lifted raw structures" or if one wants more, "Raw structures lifted to Functional Vectors". |
||
|
|
||
| rawMagma : RawMagma a ℓ → (n : ℕ) → RawMagma a ℓ | ||
| rawMagma M n = | ||
| record | ||
| { Carrier = VecF.Vector M.Carrier n | ||
| ; _≈_ = Pointwise.Pointwise M._≈_ | ||
| ; _∙_ = VecF.zipWith M._∙_ | ||
| } | ||
| where module M = RawMagma M | ||
|
|
||
| rawMonoid : RawMonoid a ℓ → (n : ℕ) → RawMonoid a ℓ | ||
| rawMonoid M n = | ||
| record | ||
| { RawMagma (rawMagma M.rawMagma n) | ||
| ; ε = λ _ → M.ε | ||
| } | ||
| where module M = RawMonoid M | ||
|
|
||
| rawGroup : RawGroup a ℓ → (n : ℕ) → RawGroup a ℓ | ||
| rawGroup G n = | ||
| record | ||
| { RawMonoid (rawMonoid G.rawMonoid n) | ||
| ; _⁻¹ = VecF.map G._⁻¹ | ||
| } | ||
| where module G = RawGroup G | ||
|
|
||
| rawNearSemiring : RawNearSemiring a ℓ → (n : ℕ) → RawNearSemiring a ℓ | ||
| rawNearSemiring NS n = | ||
| record | ||
| { Carrier = VecF.Vector NS.Carrier n | ||
| ; _≈_ = Pointwise.Pointwise NS._≈_ | ||
| ; _+_ = VecF.zipWith NS._+_ | ||
| ; _*_ = VecF.zipWith NS._*_ | ||
| ; 0# = λ _ → NS.0# | ||
| } | ||
| where module NS = RawNearSemiring NS | ||
|
|
||
| rawSemiring : RawSemiring a ℓ → (n : ℕ) → RawSemiring a ℓ | ||
| rawSemiring S n = | ||
| record | ||
| { RawNearSemiring (rawNearSemiring S.rawNearSemiring n) | ||
| ; 1# = λ _ → S.1# | ||
| } | ||
| where module S = RawSemiring S | ||
|
|
||
| rawRing : RawRing a ℓ → (n : ℕ) → RawRing a ℓ | ||
| rawRing R n = | ||
| record | ||
| { RawSemiring (rawSemiring R.rawSemiring n) | ||
| ; -_ = VecF.map R.-_ | ||
| } | ||
| where module R = RawRing R | ||
|
|
||
e-mniang marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| ------------------------------------------------------------------------ | ||
| -- VecF.Vector actions (left/right scalar multiplication) | ||
|
|
||
| _*ₗ_ : {S : Set a} → Op₂ S → Opₗ S (VecF.Vector S n) | ||
| _*ₗ_ _*_ r xs = VecF.map (r *_) xs | ||
|
|
||
| _*ᵣ_ : {S : Set a} → Op₂ S → Opᵣ S (VecF.Vector S n) | ||
| _*ᵣ_ _*_ xs r = VecF.map (_* r) xs | ||
|
|
||
| ------------------------------------------------------------------------ | ||
| -- VecF.Vector-lifted semimodule bundles | ||
|
|
||
| rawLeftSemimodule : (NS : RawNearSemiring a ℓ) (n : ℕ) → RawLeftSemimodule (RawNearSemiring.Carrier NS) a ℓ | ||
| rawLeftSemimodule NS n = | ||
| record | ||
| { Carrierᴹ = VecF.Vector NS.Carrier n | ||
| ; _≈ᴹ_ = Pointwise.Pointwise NS._≈_ | ||
| ; _+ᴹ_ = VecF.zipWith NS._+_ | ||
| ; _*ₗ_ = _*ₗ_ NS._*_ | ||
| ; 0ᴹ = λ _ → NS.0# | ||
| } | ||
| where module NS = RawNearSemiring NS | ||
|
|
||
| rawRightSemimodule : (NS : RawNearSemiring a ℓ) (n : ℕ) → RawRightSemimodule (RawNearSemiring.Carrier NS) a ℓ | ||
| rawRightSemimodule NS n = | ||
| record | ||
| { Carrierᴹ = VecF.Vector NS.Carrier n | ||
| ; _≈ᴹ_ = Pointwise.Pointwise NS._≈_ | ||
| ; _+ᴹ_ = VecF.zipWith NS._+_ | ||
| ; _*ᵣ_ = _*ᵣ_ NS._*_ | ||
| ; 0ᴹ = λ _ → NS.0# | ||
| } | ||
| where module NS = RawNearSemiring NS | ||
|
|
||
| rawBisemimodule : (NS : RawNearSemiring a ℓ) (n : ℕ) → RawBisemimodule (RawNearSemiring.Carrier NS) | ||
| (RawNearSemiring.Carrier NS) a ℓ | ||
| rawBisemimodule NS n = | ||
| record | ||
| { Carrierᴹ = VecF.Vector NS.Carrier n | ||
| ; _≈ᴹ_ = Pointwise.Pointwise NS._≈_ | ||
| ; _+ᴹ_ = VecF.zipWith NS._+_ | ||
| ; _*ₗ_ = _*ₗ_ NS._*_ | ||
| ; _*ᵣ_ = _*ᵣ_ NS._*_ | ||
| ; 0ᴹ = λ _ → NS.0# | ||
| } | ||
| where module NS = RawNearSemiring NS | ||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
While importing
Data.Vec.FunctionalasVecFmakes sense,VecFin the top-comment does not. I would expand this out to "Functional Vector-related"