Skip to content

Commit

Permalink
【PPMix No.39】mPLUG-Owl3推理 (PaddlePaddle#865)
Browse files Browse the repository at this point in the history
Co-authored-by: [email protected]@github.com <[email protected]>
  • Loading branch information
WAYKEN-TSE and nemonameless authored Dec 18, 2024
1 parent be7c973 commit d1ac2a1
Show file tree
Hide file tree
Showing 11 changed files with 3,124 additions and 4 deletions.
42 changes: 42 additions & 0 deletions paddlemix/examples/mPLUG_Owl3/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
# mPLUG-Owl3

## 1. 模型介绍

**本仓库支持的模型权重:**

| Model |
|--------------------|
| mPLUG/mPLUG-Owl3-7B-241101 |

注意:与huggingface权重同名,但权重为paddle框架的Tensor,使用`xxx.from_pretrained("mPLUG/mPLUG-Owl3-7B-241101")`即可自动下载该权重文件夹到缓存目录。


## 2 环境准备

1)[安装 PaddleMIX 环境依赖包](https://github.com/PaddlePaddle/PaddleMIX/tree/develop?tab=readme-ov-file#%E5%AE%89%E8%A3%85)

2)pip install pillow tqdm paddlenlp==3.0.0b2

注意:Python版本最好为3.10及以上版本。

## 3 快速开始

### 推理
```bash
# 图片理解
CUDA_VISIBLE_DEVICES=0 python paddlemix/examples/mPLUG_Owl3/run_inference.py \
```


### 参考文献
```BibTeX
@misc{ye2024mplugowl3longimagesequenceunderstanding,
title={mPLUG-Owl3: Towards Long Image-Sequence Understanding in Multi-Modal Large Language Models},
author={Jiabo Ye and Haiyang Xu and Haowei Liu and Anwen Hu and Ming Yan and Qi Qian and Ji Zhang and Fei Huang and Jingren Zhou},
year={2024},
eprint={2408.04840},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2408.04840},
}
```
3 changes: 3 additions & 0 deletions paddlemix/examples/mPLUG_Owl3/requirement.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
pillow
tqdm
paddlenlp==3.0.0b2
46 changes: 46 additions & 0 deletions paddlemix/examples/mPLUG_Owl3/run_inference.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from paddlenlp.transformers import Qwen2Tokenizer
from PIL import Image

from paddlemix.models.mPLUGOwl3.configuration_mplugowl3 import mPLUGOwl3Config
from paddlemix.models.mPLUGOwl3.modeling_mplugowl3 import mPLUGOwl3Model

model_path = "mPLUG/mPLUG-Owl3-7B-241101"

config = mPLUGOwl3Config.from_pretrained(model_path)
model = mPLUGOwl3Model.from_pretrained(model_path, dtype=paddle.bfloat16).eval()
tokenizer = Qwen2Tokenizer.from_pretrained(model_path)
processor = model.init_processor(tokenizer)

# image = Image.new('RGB', (500, 500), color='red')
image = Image.open("paddlemix/demo_images/examples_image1.jpg").convert("RGB")

messages = [{"role": "user", "content": """<|image|>Describe this image."""}, {"role": "assistant", "content": ""}]

inputs = processor(messages, images=[image], videos=None)
inputs["pixel_values"] = inputs["pixel_values"].cast(paddle.bfloat16)

inputs.update(
{
"tokenizer": tokenizer,
"max_new_tokens": 512, #
"decode_text": True,
}
)

res = model.generate(**inputs)
print("output:\n", res)
19 changes: 19 additions & 0 deletions paddlemix/models/mPLUGOwl3/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .configuration_hyper_qwen2 import *
from .configuration_mplugowl3 import *
from .modeling_hyper_qwen2 import *
from .modeling_mplugowl3 import *
from .modeling_navit_siglip import *
141 changes: 141 additions & 0 deletions paddlemix/models/mPLUGOwl3/configuration_hyper_qwen2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,141 @@
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddlenlp.transformers import PretrainedConfig


class HyperQwen2Config(PretrainedConfig):
"""
This is the configuration class to store the configuration of a [`Qwen2Model`]. It is used to instantiate a
Qwen2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of
Qwen2-7B-beta [Qwen/Qwen2-7B-beta](https://huggingface.co/Qwen/Qwen2-7B-beta).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 151936):
Vocabulary size of the Qwen2 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Qwen2Model`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 22016):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 32):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 32768):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied.
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
use_sliding_window (`bool`, *optional*, defaults to `False`):
Whether to use sliding window attention.
sliding_window (`int`, *optional*, defaults to 4096):
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
max_window_layers (`int`, *optional*, defaults to 28):
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
```python
>>> from transformers import Qwen2Model, Qwen2Config
>>> # Initializing a Qwen2 style configuration
>>> configuration = Qwen2Config()
>>> # Initializing a model from the Qwen2-7B style configuration
>>> model = Qwen2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""

model_type = "qwen2"
keys_to_ignore_at_inference = ["past_key_values"]

def __init__(
self,
vocab_size=151936,
hidden_size=4096,
intermediate_size=22016,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=32,
hidden_act="silu",
max_position_embeddings=32768,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
tie_word_embeddings=False,
rope_theta=10000.0,
use_sliding_window=False,
sliding_window=4096,
max_window_layers=28,
attention_dropout=0.0,
hyper_layers=[1,9,17,25],
vision_batch_size=16,
rope_scaling=None,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.use_sliding_window = use_sliding_window
self.sliding_window = sliding_window if use_sliding_window else None
self.max_window_layers = max_window_layers
self.rope_scaling = rope_scaling
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads

self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.attention_dropout = attention_dropout
self.hyper_layers = hyper_layers
self.vision_batch_size = vision_batch_size
self.seq_length = 1 #self.max_length ###
super().__init__(
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
54 changes: 54 additions & 0 deletions paddlemix/models/mPLUGOwl3/configuration_mplugowl3.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddlemix.utils.log import logger

from .configuration_hyper_qwen2 import HyperQwen2Config
from .modeling_navit_siglip import SigLipVisionConfig


class mPLUGOwl3Config(HyperQwen2Config):
model_type = "mplugowl3"
keys_to_ignore_at_inference = ["past_key_values"]

default_vision_config = {
"hidden_size": 1152,
"image_size": 378,
"intermediate_size": 4304,
"model_type": "siglip_vision_model",
"num_attention_heads": 16,
"num_hidden_layers": 27,
"patch_size": 14,
}

def __init__(
self,
use_cache=True,
vision_config=None,
**kwargs,
):
self.use_cache = use_cache

# same as HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit add tgt_sizes
if vision_config is None:
self.vision_config = SigLipVisionConfig(**self.default_vision_config)
logger.info("vision_config is None, using default vision config")
elif isinstance(vision_config, dict):
self.vision_config = SigLipVisionConfig(**vision_config)
elif isinstance(vision_config, SigLipVisionConfig):
self.vision_config = vision_config
self.image_size = 378
self.patch_size = self.vision_config.patch_size

super().__init__(**kwargs)
Loading

0 comments on commit d1ac2a1

Please sign in to comment.