Skip to content

This repo covers the MAX78000 model training and synthesis pipeline for the YOLO v1 model.

License

Notifications You must be signed in to change notification settings

YIWEI-CHEN/yolov1_maxim

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

yolov1_maxim

This repo covers the MAX78000 model training and synthesis pipeline for the YOLO v1 model.


Role of each Python script:

  • YOLO_V1_Train_QAT.py: Layer-wise QAT; set args.qat = True to quantize layers 1, 2, ..., 24 are quantized in epoch 100, 200, ..., 2400; set args.fuse = True to fuse BN layers 1, 2, ..., 24 are in epoch 2500, 2600, ..., 4800.

  • YOLO_V1_Test.py: Fake INT8 test of the model; change the directory of weight file (*.pth) to test different models.

  • YOLO_V1_Test_INT8.py: Real INT8 test of the model; no involved in the current stage.

  • YOLO_V1_DataSet_small.py: Preprocess the VOC2007 dataset.

  • yolov1_bn_model.py: Define the structure of the deep neural network.

  • YOLO_V1_LossFunction.py: Define the loss function.

  • weights/YOLO_V1_Z_5_450_Guanchu-BN_bs16_quant1_3000.pth: Model parameter after 3000 epoch training, where args.qat = True and args.fuse = False.

  • Weights/YOLO_V1_Z_5_450_Guanchu-BN_bs16_quant1_4000.pth: Model parameter after 4000 epoch training, where args.qat = True and args.fuse = False.


How to train the YOLO model?

  1. Put this folder ('code') and the 'dataset' folder to 'ai8x-training', where ai8x.py is in the same directory.

  2. Run 'python3 YOLO_V1_Train_QAT.py --gpu 0 --qat True --fuse False'.

    • You can change the hyperparameter as you want. But there is no need to do this because the current hyperparameters work for our Layer-wise QAT training.

How to test the trained model (Fake INT8 testing)?

  1. Open YOLO_V1_Test.py, revise line 27 into the directory of your trained model.

  2. Run YOLO_V1_Test.py. (python3 YOLO_V1_Test.py or using Pycharm)


How to do real INT8 testing?

We intend to focus on the real INT8 testing after the model has passed the Fake INT8 testing. Hence, YOLO_V1_Test_INT8.py, nms.py, and sigmoid.py are useless in the current stage.


How to generate the checkpoint file of our model?

  1. Open YOLO_V1_Test.py and uncomment lines 14, 15, and 29-36.

  2. Run YOLO_V1_Test.py to generate the checkpoint file in directory ./weights/. Then, you can quantize the checkpoint using ai8x-synthesis.


Trained models

The follow links contains previous trained models and logs.

  1. weight_20210711

  2. yolo_models_test

  3. logs


VOC 2007 Dataset

  • You can download train/validation and test by the above hyperlinks.
  • Or if you have an Texas A&M account, you might access the VOC2007 on datalab6.engr.tamu.edu
    • Train: /data/yiwei/VOC2007/Train
    • Test: /data/yiwei/VOC2007/Test

Environment setup

Note that Python >= 3.8

$ git clone [email protected]:YIWEI-CHEN/yolov1_maxim.git
$ cd yolov1_maxim
# note that ai8x-training and ai8x-synthesis should in the project root (e.g., yolov1_maxim)
$ git clone --recursive https://github.com/MaximIntegratedAI/ai8x-training.git
$ git clone --recursive https://github.com/MaximIntegratedAI/ai8x-synthesis.git

# in your virtual environment
# install pytorch for NVIDIA RTX A5000
$ pip install torch==1.10.2+cu113 torchvision==0.11.3+cu113 torchaudio==0.10.2+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html

# install distiller
$ cd yolov1_maxim/ai8x-training/distiller
# remove lines of numpy, torch, torchvision in requirements.txt
$ pip install -e .

# install other packages
$ pip install tensorboard matplotlib numpy colorama yamllint onnx PyGithub GitPython opencv-python

Reference


Contributors

About

This repo covers the MAX78000 model training and synthesis pipeline for the YOLO v1 model.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published