forked from oreilly-japan/deep-learning-from-scratch-3
-
Notifications
You must be signed in to change notification settings - Fork 94
/
gan.py
executable file
·133 lines (112 loc) · 3.49 KB
/
gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import numpy as np
import matplotlib.pyplot as plt
import dezero
import dezero.functions as F
import dezero.layers as L
from dezero import DataLoader
from dezero.models import Sequential
from dezero.optimizers import Adam
use_gpu = dezero.cuda.gpu_enable
max_epoch = 5
batch_size = 128
hidden_size = 62
fc_channel, fc_height, fc_width = 128, 7, 7
gen = Sequential(
L.Linear(1024),
L.BatchNorm(),
F.relu,
L.Linear(fc_channel * fc_height * fc_width),
L.BatchNorm(),
F.relu,
lambda x: F.reshape(x, (-1, fc_channel, fc_height, fc_width)),
L.Deconv2d(fc_channel // 2, kernel_size=4, stride=2, pad=1),
L.BatchNorm(),
F.relu,
L.Deconv2d(1, kernel_size=4, stride=2, pad=1),
F.sigmoid
)
dis = Sequential(
L.Conv2d(64, kernel_size=4, stride=2, pad=1),
F.leaky_relu,
L.Conv2d(128, kernel_size=4, stride=2, pad=1),
L.BatchNorm(),
F.leaky_relu,
F.flatten,
L.Linear(1024),
L.BatchNorm(),
F.leaky_relu,
L.Linear(1),
F.sigmoid
)
def init_weight(dis, gen, hidden_size):
# Input dummy data to initialize weights
batch_size = 1
z = np.random.rand(batch_size, hidden_size)
fake_images = gen(z)
dis(fake_images)
for l in dis.layers + gen.layers:
classname = l.__class__.__name__
if classname.lower() in ('conv2d', 'linear', 'deconv2d'):
l.W.data = 0.02 * np.random.randn(*l.W.data.shape)
init_weight(dis, gen, hidden_size)
opt_g = Adam(alpha=0.0002, beta1=0.5).setup(gen)
opt_d = Adam(alpha=0.0002, beta1=0.5).setup(dis)
transform = lambda x: (x / 255.0).astype(np.float32)
train_set = dezero.datasets.MNIST(train=True, transform=transform)
train_loader = DataLoader(train_set, batch_size)
if use_gpu:
gen.to_gpu()
dis.to_gpu()
train_loader.to_gpu()
xp = dezero.cuda.cupy
else:
xp = np
label_real = xp.ones(batch_size).astype(np.int)
label_fake = xp.zeros(batch_size).astype(np.int)
test_z = xp.random.randn(25, hidden_size).astype(np.float32)
def generate_image():
with dezero.test_mode():
fake_images = gen(test_z)
img = dezero.cuda.as_numpy(fake_images.data)
plt.figure()
for i in range(0, 25):
ax = plt.subplot(5, 5, i+1)
ax.axis('off')
plt.imshow(img[i][0], 'gray')
plt.show()
#plt.savefig('gan_{}.png'.format(idx))
for epoch in range(max_epoch):
avg_loss_d = 0
avg_loss_g = 0
cnt = 0
for x, t in train_loader:
cnt += 1
if len(t) != batch_size:
continue
# (1) Update discriminator
z = xp.random.randn(batch_size, hidden_size).astype(np.float32)
fake = gen(z)
y_real = dis(x)
y_fake = dis(fake.data)
loss_d = F.binary_cross_entropy(y_real, label_real) + \
F.binary_cross_entropy(y_fake, label_fake)
gen.cleargrads()
dis.cleargrads()
loss_d.backward()
opt_d.update()
# (2) Update generator
y_fake = dis(fake)
loss_g = F.binary_cross_entropy(y_fake, label_real)
gen.cleargrads()
dis.cleargrads()
loss_g.backward()
opt_g.update()
# Print loss & visualize generator
avg_loss_g += loss_g.data
avg_loss_d += loss_d.data
interval = 100 if use_gpu else 5
if cnt % interval == 0:
epoch_detail = epoch + cnt / train_loader.max_iter
print('epoch: {:.2f}, loss_g: {:.4f}, loss_d: {:.4f}'.format(
epoch_detail, float(avg_loss_g/cnt), float(avg_loss_d/cnt)))
generate_image()