Skip to content

Refactor Eckmann-Hilton #788

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 29 commits into from
Sep 24, 2023
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
Show all changes
29 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions src/foundation.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -137,6 +137,7 @@ open import foundation.functoriality-set-truncation public
open import foundation.functoriality-truncation public
open import foundation.fundamental-theorem-of-identity-types public
open import foundation.global-choice public
open import foundation.higher-transport-along-identifications public
open import foundation.hilberts-epsilon-operators public
open import foundation.homotopies public
open import foundation.homotopy-induction public
Expand Down
1 change: 1 addition & 0 deletions src/foundation/dependent-identifications.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@ open import foundation-core.dependent-identifications public
```agda
open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.higher-transport-along-identifications
open import foundation.transport-along-identifications
open import foundation.universe-levels

Expand Down
147 changes: 147 additions & 0 deletions src/foundation/higher-transport-along-identifications.lagda.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,147 @@
# Higher transport along identifications

```agda
module foundation.higher-transport-along-identifications where
```

<details><summary>Imports</summary>

```agda
open import foundation.action-on-identifications-functions
open import foundation.commuting-squares-of-identifications
open import foundation.dependent-pair-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.path-algebra
open import foundation.transport-along-identifications
open import foundation.universe-levels
open import foundation.whiskering-homotopies
```

</details>

### The action on identifications of transport

```agda
module _
{l1 l2 : Level} {A : UU l1} {x y : A} {p p' : x = y}
where

tr² : (B : A → UU l2) (α : p = p') (b : B x) → (tr B p b) = (tr B p' b)
tr² B α b = ap (λ t → tr B t b) α

module _
{l1 l2 : Level} {A : UU l1} {x y : A} {p p' : x = y}
{α α' : p = p'}
where

tr³ : (B : A → UU l2) (β : α = α') (b : B x) → (tr² B α b) = (tr² B α' b)
tr³ B β b = ap (λ t → tr² B t b) β
```

### Computing 2-dimensional transport in a family of identifications with a fixed source

```agda
module _
{l : Level} {A : UU l} {a b c : A} {q q' : b = c}
where

tr²-Id-right :
(α : q = q') (p : a = b) →
coherence-square-identifications
( tr² (Id a) α p)
( tr-Id-right q' p)
( tr-Id-right q p)
( identification-left-whisk p α)
tr²-Id-right α p =
inv-nat-htpy (λ (t : b = c) → tr-Id-right t p) α
```

### Coherences and algebraic identities for `tr²`

```agda
module _
{l1 l2 : Level} {A : UU l1} {x y : A}
{B : A → UU l2}
where

tr²-concat :
{p p' p'' : x = y} (α : p = p') (α' : p' = p'') (b : B x) →
(tr² B (α ∙ α') b) = (tr² B α b ∙ tr² B α' b)
tr²-concat α α' b = ap-concat (λ t → tr B t b) α α'

module _
{l1 l2 : Level} {A : UU l1} {x y z : A}
{B : A → UU l2}
where

tr²-left-whisk :
(p : x = y) {q q' : y = z} (β : q = q') (b : B x) →
coherence-square-identifications
( tr² B (identification-left-whisk p β) b)
( tr-concat p q' b)
( tr-concat p q b)
( htpy-right-whisk (tr² B β) (tr B p) b)
tr²-left-whisk refl refl b = refl

tr²-right-whisk :
{p p' : x = y} (α : p = p') (q : y = z) (b : B x) →
coherence-square-identifications
( tr² B (identification-right-whisk α q) b)
( tr-concat p' q b)
( tr-concat p q b)
( htpy-left-whisk (tr B q) (tr² B α) b)
tr²-right-whisk refl refl b = inv right-unit
```

#### Coherences and algebraic identities for `tr³`

```agda
module _
{l1 l2 : Level} {A : UU l1} {x y z : A}
{B : A → UU l2}
where

tr³-htpy-swap-path-swap :
{q q' : y = z} (β : q = q') {p p' : x = y} (α : p = p') (b : B x) →
coherence-square-identifications
( identification-right-whisk
( tr³
( B)
( path-swap-nat-identification-left-whisk β α)
( b))
( tr-concat p' q' b))
( ( identification-right-whisk
( tr²-concat
( identification-right-whisk α q)
( identification-left-whisk p' β) b)
( tr-concat p' q' b)) ∙
( vertical-concat-square
( tr² B (identification-right-whisk α q) b)
( tr² B (identification-left-whisk p' β) b)
( tr-concat p' q' b)
( tr-concat p' q b)
( tr-concat p q b)
( htpy-left-whisk (tr B q) (tr² B α) b)
( htpy-right-whisk (tr² B β) (tr B p') b)
( tr²-right-whisk α q b)
( tr²-left-whisk p' β b)))
( ( identification-right-whisk
( tr²-concat (identification-left-whisk p β)
( identification-right-whisk α q') b)
( tr-concat p' q' b)) ∙
( vertical-concat-square
( tr² B (identification-left-whisk p β) b)
( tr² B (identification-right-whisk α q') b)
( tr-concat p' q' b)
( tr-concat p q' b)
( tr-concat p q b)
( htpy-right-whisk (tr² B β) (tr B p) b)
( htpy-left-whisk (tr B q') (tr² B α) b)
( tr²-left-whisk p β b)
( tr²-right-whisk α q' b)))
( identification-left-whisk
( tr-concat p q b)
( htpy-swap-nat-right-htpy (tr² B β) (tr² B α) b))
tr³-htpy-swap-path-swap {q = refl} refl {p = refl} refl b = refl
```
1 change: 1 addition & 0 deletions src/foundation/identity-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@ open import foundation-core.identity-types public
```agda
open import foundation.action-on-identifications-functions
open import foundation.binary-equivalences
open import foundation.commuting-squares-of-identifications
open import foundation.dependent-pair-types
open import foundation.equivalence-extensionality
open import foundation.function-extensionality
Expand Down
73 changes: 50 additions & 23 deletions src/foundation/path-algebra.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -229,7 +229,7 @@ horizontal-concat-Id² :
horizontal-concat-Id² α β = ap-binary (λ s t → s ∙ t) α β
```

#### Identification whiskering
### Definition of identification whiskering

```agda
module _
Expand Down Expand Up @@ -279,33 +279,17 @@ right-unit-law-vertical-concat-Id² = right-unit

left-unit-law-horizontal-concat-Id² :
{l : Level} {A : UU l} {x y z : A} {p : x = y} {u v : y = z} (γ : u = v) →
horizontal-concat-Id² (refl {x = p}) γ = ap (concat p z) γ
horizontal-concat-Id² (refl {x = p}) γ =
identification-left-whisk p γ
left-unit-law-horizontal-concat-Id² γ = left-unit-ap-binary (λ s t → s ∙ t) γ

right-unit-law-horizontal-concat-Id² :
{l : Level} {A : UU l} {x y z : A} {p q : x = y} (α : p = q) {u : y = z} →
horizontal-concat-Id² α (refl {x = u}) = ap (concat' x u) α
horizontal-concat-Id² α (refl {x = u}) =
identification-right-whisk α u
right-unit-law-horizontal-concat-Id² α = right-unit-ap-binary (λ s t → s ∙ t) α
```

#### The whiskering operations allow us to commute higher identifications

```agda
module _
{l : Level} {A : UU l} {x y z : A}
where

path-swap-nat-identification-left-whisk :
{q q' : y = z} (β : q = q') {p p' : x = y} (α : p = p') →
coherence-square-identifications
( identification-left-whisk p β)
( identification-right-whisk α q')
( identification-right-whisk α q)
( identification-left-whisk p' β)
path-swap-nat-identification-left-whisk β =
nat-htpy (htpy-identification-left-whisk β)
```

Horizontal concatination satisfies an additional "2-dimensional" unit law (on
both the left and right) induced by the unit laws on the boundary 1-paths.

Expand All @@ -316,20 +300,63 @@ module _

nat-sq-right-unit-Id² :
coherence-square-identifications
right-unit α (horizontal-concat-Id² α refl) right-unit
( right-unit)
( α)
( horizontal-concat-Id² α refl)
( right-unit)
nat-sq-right-unit-Id² =
( ( horizontal-concat-Id² refl (inv (ap-id α))) ∙
( nat-htpy htpy-right-unit α)) ∙
( horizontal-concat-Id² (inv (right-unit-law-horizontal-concat-Id² α)) refl)

nat-sq-left-unit-Id² :
coherence-square-identifications
left-unit α (horizontal-concat-Id² (refl {x = refl}) α) left-unit
( left-unit)
( α)
( horizontal-concat-Id² (refl {x = refl}) α)
( left-unit)
nat-sq-left-unit-Id² =
( ( (inv (ap-id α) ∙ (nat-htpy htpy-left-unit α)) ∙ right-unit) ∙
( inv (left-unit-law-horizontal-concat-Id² α))) ∙ inv right-unit
```

### Unit laws for whiskering

```agda
module _
{l : Level} {A : UU l} {x y : A}
where

left-unit-law-identification-left-whisk :
{p p' : x = y} (α : p = p') →
identification-left-whisk refl α = α
left-unit-law-identification-left-whisk refl = refl

right-unit-law-identification-right-whisk :
{p p' : x = y} (α : p = p') →
identification-right-whisk α refl =
right-unit ∙ α ∙ inv right-unit
right-unit-law-identification-right-whisk {p = refl} refl = refl
```

### The whiskering operations allow us to commute higher identifications

```agda
module _
{l : Level} {A : UU l} {x y z : A}
where

path-swap-nat-identification-left-whisk :
{q q' : y = z} (β : q = q') {p p' : x = y} (α : p = p') →
coherence-square-identifications
( identification-left-whisk p β)
( identification-right-whisk α q')
( identification-right-whisk α q)
( identification-left-whisk p' β)
path-swap-nat-identification-left-whisk β =
nat-htpy (htpy-identification-left-whisk β)
```

### Definition of horizontal inverse

2-paths have an induced inverse operation from the operation on boundary 1-paths
Expand Down
Loading