Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Refactoring pointed types #1056

Merged
merged 55 commits into from
Mar 13, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
55 commits
Select commit Hold shift + click to select a range
626e354
pulling changes from spans
EgbertRijke Mar 5, 2024
1a7562b
making changes compatible with rest of library, up to synthetic hott
EgbertRijke Mar 5, 2024
05bdc81
moving files
EgbertRijke Mar 5, 2024
cc07eb7
some repairs in synthetic homotopy theory
EgbertRijke Mar 5, 2024
262572b
null
EgbertRijke Mar 5, 2024
22e58c3
fixing smash products
EgbertRijke Mar 6, 2024
c59bf6e
everything compiles
EgbertRijke Mar 6, 2024
375d16d
make pre-commit
EgbertRijke Mar 6, 2024
b9eee83
adding file about pointed equivalences to fix missing link error
EgbertRijke Mar 6, 2024
780ee8e
adding file about pointed equivalences to fix missing link error
EgbertRijke Mar 6, 2024
bad9f16
make pre-commit
EgbertRijke Mar 6, 2024
66f71a6
name change for pointed type of cocones under pointed span diagrams
EgbertRijke Mar 6, 2024
0ce4ad5
adding new file on morphisms of twisted pointed arrows in order to fi…
EgbertRijke Mar 6, 2024
02c8dbf
factor out opposite pointed spans
EgbertRijke Mar 6, 2024
a2346ab
create new file on transposition pointed span diagrams in order to fi…
EgbertRijke Mar 6, 2024
931a98f
make pre-commit
EgbertRijke Mar 6, 2024
d14273e
adding Agda entries to concept macros
EgbertRijke Mar 6, 2024
2c55621
fix broken entries in concept macros
EgbertRijke Mar 6, 2024
3ce12ab
work
EgbertRijke Mar 7, 2024
ac225b4
whiskering of pointed 2-homotopies with respect to concatenation
EgbertRijke Mar 7, 2024
b8ccae0
the reflexive homotopy of morphisms of pointed arrows
EgbertRijke Mar 7, 2024
7544d3c
review comments
EgbertRijke Mar 7, 2024
85c97f0
review comments on pointed homotopies
EgbertRijke Mar 8, 2024
678dc82
make pre-commit
EgbertRijke Mar 8, 2024
d63be88
fix Cavallo's trick
EgbertRijke Mar 8, 2024
f981069
fix broken links
EgbertRijke Mar 8, 2024
caed77b
Merge branch 'master' of github.com:UniMath/agda-unimath into pointed
EgbertRijke Mar 8, 2024
e82eb9e
really fix broken links
EgbertRijke Mar 8, 2024
294f9cd
factoring out uniform pointed homotopies and pointed 2-homotopies
EgbertRijke Mar 8, 2024
734963f
fix missing Agda entry in concept macro
EgbertRijke Mar 8, 2024
a888f56
concatenation of pointed homotopies is a binary equivalence
EgbertRijke Mar 8, 2024
c80a035
shortening a lengthy coherence proof
EgbertRijke Mar 8, 2024
25627ff
concatenation of pointed 2-homotopies is a binary equivalence
EgbertRijke Mar 9, 2024
1022b00
torsoriality of homotopies of morphisms of pointed arrows
EgbertRijke Mar 9, 2024
92df156
cut off unfinished work
EgbertRijke Mar 9, 2024
a2cb069
refactoring long construction of the base point coherence of the righ…
EgbertRijke Mar 9, 2024
cfe3204
using span diagrams in null cocones
EgbertRijke Mar 9, 2024
1858236
review comments
EgbertRijke Mar 9, 2024
bb76498
review comments
EgbertRijke Mar 9, 2024
4d1ebcd
revised all review comments
EgbertRijke Mar 9, 2024
b0b482d
refactoring pointed isos
EgbertRijke Mar 9, 2024
d84cc36
comma
EgbertRijke Mar 9, 2024
b215898
revised wording
EgbertRijke Mar 9, 2024
432c6db
review comments
EgbertRijke Mar 9, 2024
d154d60
make pre-commit
EgbertRijke Mar 9, 2024
7ba9e27
Merge branch 'master' of github.com:UniMath/agda-unimath into pointed
EgbertRijke Mar 10, 2024
cf05eb9
Merge branch 'master' of github.com:UniMath/agda-unimath into pointed
EgbertRijke Mar 11, 2024
c60e6e3
addressing last comments
EgbertRijke Mar 11, 2024
04a3f6d
make pre-commit
EgbertRijke Mar 11, 2024
a724639
make pre-commit
EgbertRijke Mar 11, 2024
ce905ad
fix link
EgbertRijke Mar 11, 2024
c63634c
Merge branch 'master' of github.com:UniMath/agda-unimath into pointed
EgbertRijke Mar 11, 2024
073f7c0
Merge branch 'pointed' of github.com:EgbertRijke/agda-unimath into po…
EgbertRijke Mar 11, 2024
c9c1dca
review comments
EgbertRijke Mar 13, 2024
1166932
merge conflict
EgbertRijke Mar 13, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion src/foundation-core/commuting-squares-of-homotopies.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,9 @@ homotopy is called a
{{#concept "coherence" Disambiguation="commuting square of homotopies" Agda=coherence-square-homotopies}}
of the square.

## Definition
## Definitions

### Commuting squares of homotopies

```agda
module _
Expand Down
15 changes: 15 additions & 0 deletions src/foundation-core/constant-maps.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,9 +12,24 @@ open import foundation.universe-levels

</details>

## Idea

The {{#concept "constant map" Agda=const}} from `A` to `B` at an element `b : B`
is the function `x ↦ b` mapping every element `x : A` to the given element
`b : B`. In common type theoretic notation, the constant map at `b` is the
function

```text
λ x → b.
```

## Definition

```agda
const : {l1 l2 : Level} (A : UU l1) (B : UU l2) → B → A → B
const A B b x = b
```

## See also

- [Constant pointed maps](structured-types.constant-pointed-maps.md)
12 changes: 12 additions & 0 deletions src/foundation-core/homotopies.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -274,6 +274,18 @@ inv-nat-htpy :
ap f p ∙ H y = H x ∙ ap g p
inv-nat-htpy H p = inv (nat-htpy H p)

nat-refl-htpy :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B)
{x y : A} (p : x = y) →
nat-htpy (refl-htpy' f) p = inv right-unit
nat-refl-htpy f refl = refl

inv-nat-refl-htpy :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B)
{x y : A} (p : x = y) →
inv-nat-htpy (refl-htpy' f) p = right-unit
inv-nat-refl-htpy f refl = refl

nat-htpy-id :
{l : Level} {A : UU l} {f : A → A} (H : f ~ id)
{x y : A} (p : x = y) → H x ∙ p = ap f p ∙ H y
Expand Down
27 changes: 27 additions & 0 deletions src/foundation-core/identity-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -231,6 +231,8 @@ use of the fact that the identity types are defined _for all types_. In other
words, since identity types are themselves types, we can consider identity types
of identity types, and so on.

#### Associators

```agda
module _
{l : Level} {A : UU l}
Expand Down Expand Up @@ -264,6 +266,21 @@ module _
{l : Level} {A : UU l}
where

double-assoc :
{x y z w v : A} (p : x = y) (q : y = z) (r : z = w) (s : w = v) →
(((p ∙ q) ∙ r) ∙ s) = p ∙ (q ∙ (r ∙ s))
double-assoc refl q r s = assoc q r s

triple-assoc :
{x y z w v u : A}
(p : x = y) (q : y = z) (r : z = w) (s : w = v) (t : v = u) →
((((p ∙ q) ∙ r) ∙ s) ∙ t) = p ∙ (q ∙ (r ∙ (s ∙ t)))
triple-assoc refl q r s t = double-assoc q r s t
```

#### Unit laws

```agda
left-unit : {x y : A} {p : x = y} → refl ∙ p = p
left-unit = refl

Expand Down Expand Up @@ -387,11 +404,21 @@ module _
p ∙ q = r → q = inv p ∙ r
left-transpose-eq-concat refl q r s = s

inv-left-transpose-eq-concat :
{x y : A} (p : x = y) {z : A} (q : y = z) (r : x = z) →
q = inv p ∙ r → p ∙ q = r
inv-left-transpose-eq-concat refl q r s = s

right-transpose-eq-concat :
{x y : A} (p : x = y) {z : A} (q : y = z) (r : x = z) →
p ∙ q = r → p = r ∙ inv q
right-transpose-eq-concat p refl r s = (inv right-unit ∙ s) ∙ inv right-unit

inv-right-transpose-eq-concat :
{x y : A} (p : x = y) {z : A} (q : y = z) (r : x = z) →
p = r ∙ inv q → p ∙ q = r
inv-right-transpose-eq-concat p refl r s = right-unit ∙ (s ∙ right-unit)

double-transpose-eq-concat :
{x y u v : A} (r : x = u) (p : x = y) (s : u = v) (q : y = v) →
p ∙ q = r ∙ s → (inv r) ∙ p = s ∙ (inv q)
Expand Down
Loading
Loading