Skip to content

Commit

Permalink
Quasiidempotence is not a proposition (#1127)
Browse files Browse the repository at this point in the history
Follow-up to #1105.
  • Loading branch information
fredrik-bakke authored Jun 4, 2024
1 parent 3d161cc commit 8ad6a6a
Show file tree
Hide file tree
Showing 11 changed files with 266 additions and 94 deletions.
22 changes: 21 additions & 1 deletion src/foundation/constant-type-families.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,13 +10,13 @@ module foundation.constant-type-families where
open import foundation.action-on-identifications-dependent-functions
open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.transport-along-identifications
open import foundation.universe-levels

open import foundation-core.commuting-squares-of-identifications
open import foundation-core.dependent-identifications
open import foundation-core.equivalences
open import foundation-core.identity-types
```

</details>
Expand Down Expand Up @@ -76,6 +76,26 @@ tr-constant-type-family :
tr-constant-type-family refl b = refl
```

### Computing dependent identifications in constant type families

```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2}
where

map-compute-dependent-identification-constant-type-family :
{x y : A} (p : x = y) {x' y' : B}
x' = y' dependent-identification (λ _ B) p x' y'
map-compute-dependent-identification-constant-type-family p {x'} q =
tr-constant-type-family p x' ∙ q

compute-dependent-identification-constant-type-family :
{x y : A} (p : x = y) {x' y' : B}
(x' = y') ≃ dependent-identification (λ _ B) p x' y'
compute-dependent-identification-constant-type-family p {x'} {y'} =
equiv-concat (tr-constant-type-family p x') y'
```

### Dependent action on paths of sections of standard constant type families

```agda
Expand Down
33 changes: 29 additions & 4 deletions src/foundation/dependent-identifications.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,8 +9,10 @@ open import foundation-core.dependent-identifications public
<details><summary>Imports</summary>

```agda
open import foundation.action-on-identifications-dependent-functions
open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.strictly-right-unital-concatenation-identifications
open import foundation.transport-along-higher-identifications
open import foundation.universe-levels

Expand All @@ -26,7 +28,7 @@ open import foundation-core.transport-along-identifications
## Idea

We characterize dependent paths in the family of depedent paths; define the
groupoidal operators on dependent paths; define the cohrences paths: prove the
groupoidal operators on dependent paths; define the coherence paths; prove the
operators are equivalences.

## Properites
Expand Down Expand Up @@ -120,12 +122,35 @@ module _
dependent-identification B (p ∙ q) x' z'
concat-dependent-identification refl q refl q' = q'

compute-concat-dependent-identification-refl :
compute-concat-dependent-identification-left-base-refl :
{ y z : A} (q : y = z)
{ x' y' : B y} {z' : B z} (p' : x' = y')
( q' : dependent-identification B q y' z')
( concat-dependent-identification refl q p' q') = ap (tr B q) p' ∙ q'
compute-concat-dependent-identification-refl refl refl q' = refl
concat-dependent-identification refl q p' q' = ap (tr B q) p' ∙ q'
compute-concat-dependent-identification-left-base-refl q refl q' = refl
```

#### Strictly right unital concatenation of dependent identifications

```agda
module _
{l1 l2 : Level} {A : UU l1} (B : A UU l2)
where

right-strict-concat-dependent-identification :
{x y z : A} (p : x = y) (q : y = z) {x' : B x} {y' : B y} {z' : B z}
dependent-identification B p x' y'
dependent-identification B q y' z'
dependent-identification B (p ∙ᵣ q) x' z'
right-strict-concat-dependent-identification p refl p' q' = p' ∙ᵣ q'

compute-right-strict-concat-dependent-identification-right-base-refl :
{ x y : A} (p : x = y)
{ x' : B x} {y' z' : B y} (p' : dependent-identification B p x' y')
( q' : y' = z')
right-strict-concat-dependent-identification p refl p' q' = p' ∙ᵣ q'
compute-right-strict-concat-dependent-identification-right-base-refl q p' q' =
refl
```

#### Inverses of dependent identifications
Expand Down
105 changes: 72 additions & 33 deletions src/foundation/quasicoherently-idempotent-maps.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,11 +8,15 @@ module foundation.quasicoherently-idempotent-maps where

```agda
open import foundation.1-types
open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.equality-dependent-pair-types
open import foundation.homotopy-algebra
open import foundation.idempotent-maps
open import foundation.identity-types
open import foundation.negated-equality
open import foundation.negation
open import foundation.transport-along-identifications
open import foundation.universe-levels
open import foundation.whiskering-higher-homotopies-composition
open import foundation.whiskering-homotopies-composition
Expand All @@ -24,6 +28,7 @@ open import foundation-core.retractions
open import foundation-core.sets

open import synthetic-homotopy-theory.circle
open import synthetic-homotopy-theory.loop-homotopy-circle
```

</details>
Expand Down Expand Up @@ -54,13 +59,13 @@ corresponds to the definition of a _quasiidempotent map_ in {{#cite Shu17}} and
### The structure of quasicoherent idempotence on maps

```agda
coherence-is-quasicoherently-idempotent :
quasicoherence-is-idempotent :
{l : Level} {A : UU l} (f : A A) f ∘ f ~ f UU l
coherence-is-quasicoherently-idempotent f I = f ·l I ~ I ·r f
quasicoherence-is-idempotent f I = f ·l I ~ I ·r f

is-quasicoherently-idempotent : {l : Level} {A : UU l} (A A) UU l
is-quasicoherently-idempotent f =
Σ (f ∘ f ~ f) (coherence-is-quasicoherently-idempotent f)
Σ (f ∘ f ~ f) (quasicoherence-is-idempotent f)

module _
{l : Level} {A : UU l} {f : A A} (H : is-quasicoherently-idempotent f)
Expand All @@ -70,7 +75,7 @@ module _
is-idempotent-is-quasicoherently-idempotent = pr1 H

coh-is-quasicoherently-idempotent :
coherence-is-quasicoherently-idempotent f
quasicoherence-is-idempotent f
( is-idempotent-is-quasicoherently-idempotent)
coh-is-quasicoherently-idempotent = pr2 H
```
Expand Down Expand Up @@ -99,7 +104,7 @@ module _
( is-quasicoherently-idempotent-quasicoherently-idempotent-map)

coh-quasicoherently-idempotent-map :
coherence-is-quasicoherently-idempotent
quasicoherence-is-idempotent
( map-quasicoherently-idempotent-map)
( is-idempotent-quasicoherently-idempotent-map)
coh-quasicoherently-idempotent-map =
Expand All @@ -114,16 +119,44 @@ module _

## Properties

### The identity function is quasicoherently idempotent

In fact, any idempotence witness of the identity function is quasicoherent.

```agda
module _
{l : Level} {A : UU l} (H : is-idempotent (id {A = A}))
where

quasicoherence-is-idempotent-id :
quasicoherence-is-idempotent id H
quasicoherence-is-idempotent-id = left-unit-law-left-whisker-comp H

is-quasicoherently-idempotent-is-idempotent-id :
is-quasicoherently-idempotent (id {A = A})
is-quasicoherently-idempotent-is-idempotent-id =
( H , quasicoherence-is-idempotent-id)

module _
{l : Level} {A : UU l}
where

is-quasicoherently-idempotent-id :
is-quasicoherently-idempotent (id {A = A})
is-quasicoherently-idempotent-id =
is-quasicoherently-idempotent-is-idempotent-id refl-htpy
```

### Being quasicoherently idempotent on a set is a property

```agda
module _
{l : Level} {A : UU l} (is-set-A : is-set A) (f : A A)
where

is-prop-coherence-is-quasicoherently-idempotent-is-set :
(I : f ∘ f ~ f) is-prop (coherence-is-quasicoherently-idempotent f I)
is-prop-coherence-is-quasicoherently-idempotent-is-set I =
is-prop-quasicoherence-is-idempotent-is-set :
(I : f ∘ f ~ f) is-prop (quasicoherence-is-idempotent f I)
is-prop-quasicoherence-is-idempotent-is-set I =
is-prop-Π
( λ x
is-set-is-prop
Expand All @@ -136,7 +169,7 @@ module _
is-prop-is-quasicoherently-idempotent-is-set =
is-prop-Σ
( is-prop-is-idempotent-is-set is-set-A f)
( is-prop-coherence-is-quasicoherently-idempotent-is-set)
( is-prop-quasicoherence-is-idempotent-is-set)

is-quasicoherently-idempotent-is-set-Prop : Prop l
is-quasicoherently-idempotent-is-set-Prop =
Expand Down Expand Up @@ -171,16 +204,22 @@ Two distinct witnesses that it is idempotent are given by `t ↦ refl` and
`t ↦ loop`. Both of these are quasicoherent, because

```text
coherence-is-quasicoherently-idempotent id I ≐ (id ·l I ~ I ·r id) ≃ (I ~ I).
quasicoherence-is-idempotent id I ≐ (id ·l I ~ I ·r id) ≃ (I ~ I).
```

To formalize this result, we first need that the loop of the circle is
nontrivial.

```text
is-not-prop-is-quasicoherently-idempotent-id-circle :
```agda
is-not-prop-is-quasicoherently-idempotent-id-𝕊¹ :
¬ (is-prop (is-quasicoherently-idempotent (id {A = 𝕊¹})))
is-not-prop-is-quasicoherently-idempotent-id-circle = ?
is-not-prop-is-quasicoherently-idempotent-id-𝕊¹ H =
nonequal-Π
( loop-htpy-𝕊¹)
( refl-htpy)
( base-𝕊¹)
( is-not-refl-ev-base-loop-htpy-𝕊¹)
( ap pr1
( eq-is-prop H
{ is-quasicoherently-idempotent-is-idempotent-id loop-htpy-𝕊¹}
{ is-quasicoherently-idempotent-is-idempotent-id refl-htpy}))
```

### Idempotent maps on sets are quasicoherently idempotent
Expand Down Expand Up @@ -208,11 +247,11 @@ module _
(i : B A) (r : A B) (H : is-retraction i r)
where

coherence-is-quasicoherently-idempotent-inclusion-retraction :
coherence-is-quasicoherently-idempotent
quasicoherence-is-idempotent-inclusion-retraction :
quasicoherence-is-idempotent
( i ∘ r)
( is-idempotent-inclusion-retraction i r H)
coherence-is-quasicoherently-idempotent-inclusion-retraction =
quasicoherence-is-idempotent-inclusion-retraction =
( inv-preserves-comp-left-whisker-comp i r (i ·l H ·r r)) ∙h
( double-whisker-comp²
( i)
Expand All @@ -223,7 +262,7 @@ module _
is-quasicoherently-idempotent (i ∘ r)
is-quasicoherently-idempotent-inclusion-retraction =
( is-idempotent-inclusion-retraction i r H ,
coherence-is-quasicoherently-idempotent-inclusion-retraction)
quasicoherence-is-idempotent-inclusion-retraction)
```

### Quasicoherent idempotence is preserved by homotopies
Expand All @@ -237,13 +276,13 @@ module _
where

abstract
coherence-is-quasicoherently-idempotent-htpy :
quasicoherence-is-idempotent-htpy :
(H : g ~ f)
coherence-is-quasicoherently-idempotent g
quasicoherence-is-idempotent g
( is-idempotent-htpy
( is-idempotent-is-quasicoherently-idempotent F)
( H))
coherence-is-quasicoherently-idempotent-htpy H =
quasicoherence-is-idempotent-htpy H =
homotopy-reasoning
( g ·l is-idempotent-htpy I H)
~ ( H ·r (g ∘ g)) ∙h
Expand Down Expand Up @@ -317,7 +356,7 @@ module _
( is-idempotent-is-quasicoherently-idempotent F)
( H)
pr2 (is-quasicoherently-idempotent-htpy H) =
coherence-is-quasicoherently-idempotent-htpy H
quasicoherence-is-idempotent-htpy H

is-quasicoherently-idempotent-inv-htpy :
f ~ g is-quasicoherently-idempotent g
Expand All @@ -326,7 +365,7 @@ module _
( is-idempotent-is-quasicoherently-idempotent F)
( inv-htpy H)
pr2 (is-quasicoherently-idempotent-inv-htpy H) =
coherence-is-quasicoherently-idempotent-htpy (inv-htpy H)
quasicoherence-is-idempotent-htpy (inv-htpy H)
```

### Realigning the coherence of a quasicoherent idempotence proof
Expand All @@ -341,18 +380,18 @@ module _
(I : f ∘ f ~ f)
where

coherence-is-quasicoherently-idempotent-is-idempotent-htpy :
quasicoherence-is-idempotent-is-idempotent-htpy :
is-idempotent-is-quasicoherently-idempotent F ~ I
coherence-is-quasicoherently-idempotent f I
coherence-is-quasicoherently-idempotent-is-idempotent-htpy α =
quasicoherence-is-idempotent f I
quasicoherence-is-idempotent-is-idempotent-htpy α =
( left-whisker-comp² f (inv-htpy α)) ∙h
( coh-is-quasicoherently-idempotent F) ∙h
( right-whisker-comp² α f)

coherence-is-quasicoherently-idempotent-is-idempotent-inv-htpy :
quasicoherence-is-idempotent-is-idempotent-inv-htpy :
I ~ is-idempotent-is-quasicoherently-idempotent F
coherence-is-quasicoherently-idempotent f I
coherence-is-quasicoherently-idempotent-is-idempotent-inv-htpy α =
quasicoherence-is-idempotent f I
quasicoherence-is-idempotent-is-idempotent-inv-htpy α =
( left-whisker-comp² f α) ∙h
( coh-is-quasicoherently-idempotent F) ∙h
( right-whisker-comp² (inv-htpy α) f)
Expand All @@ -361,13 +400,13 @@ module _
is-idempotent-is-quasicoherently-idempotent F ~ I
is-quasicoherently-idempotent f
is-quasicoherently-idempotent-is-idempotent-htpy α =
( I , coherence-is-quasicoherently-idempotent-is-idempotent-htpy α)
( I , quasicoherence-is-idempotent-is-idempotent-htpy α)

is-quasicoherently-idempotent-is-idempotent-inv-htpy :
I ~ is-idempotent-is-quasicoherently-idempotent F
is-quasicoherently-idempotent f
is-quasicoherently-idempotent-is-idempotent-inv-htpy α =
( I , coherence-is-quasicoherently-idempotent-is-idempotent-inv-htpy α)
( I , quasicoherence-is-idempotent-is-idempotent-inv-htpy α)
```

### Not every idempotent map is quasicoherently idempotent
Expand Down
10 changes: 5 additions & 5 deletions src/foundation/split-idempotent-maps.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -525,11 +525,11 @@ module _
where

abstract
coherence-is-quasicoherently-idempotent-is-split-idempotent :
coherence-is-quasicoherently-idempotent f
quasicoherence-is-idempotent-is-split-idempotent :
quasicoherence-is-idempotent f
( is-idempotent-is-split-idempotent H)
coherence-is-quasicoherently-idempotent-is-split-idempotent =
coherence-is-quasicoherently-idempotent-is-idempotent-htpy
quasicoherence-is-idempotent-is-split-idempotent =
quasicoherence-is-idempotent-is-idempotent-htpy
( is-quasicoherently-idempotent-inv-htpy
( is-quasicoherently-idempotent-inclusion-retraction
( inclusion-is-split-idempotent H)
Expand All @@ -543,7 +543,7 @@ module _
is-quasicoherently-idempotent f
is-quasicoherently-idempotent-is-split-idempotent =
( is-idempotent-is-split-idempotent H ,
coherence-is-quasicoherently-idempotent-is-split-idempotent)
quasicoherence-is-idempotent-is-split-idempotent)

module _
{l1 l2 : Level} {A : UU l1} (H : split-idempotent-map l2 A)
Expand Down
1 change: 1 addition & 0 deletions src/synthetic-homotopy-theory.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -79,6 +79,7 @@ open import synthetic-homotopy-theory.iterated-suspensions-of-pointed-types publ
open import synthetic-homotopy-theory.join-powers-of-types public
open import synthetic-homotopy-theory.joins-of-maps public
open import synthetic-homotopy-theory.joins-of-types public
open import synthetic-homotopy-theory.loop-homotopy-circle public
open import synthetic-homotopy-theory.loop-spaces public
open import synthetic-homotopy-theory.maps-of-prespectra public
open import synthetic-homotopy-theory.mere-spheres public
Expand Down
Loading

0 comments on commit 8ad6a6a

Please sign in to comment.