Skip to content
/ TF-MOENAS Public template

[ICONIP 2021] "Training-Free Multi-Objective Evolutionary Neural Architecture Search via Neural Tangent Kernel and Number of Linear Regions" by Tu Do, Ngoc Hoang Luong

License

Notifications You must be signed in to change notification settings

TuDo1403/TF-MOENAS

Repository files navigation

Training-Free Multi-Objective Evolutionary Neural Architecture Search via Neural Tangent Kernel and Number of Linear Regions

MIT licensed

Ngoc Hoang Luong, Tu Do

In ICONIP 2021.

Installation

  • Clone this repo:
git clone https://github.com/MinhTuDo/TF-MOENAS.git
cd TF-MOENAS
  • Install dependencies:
pip install -r requirements.txt

Usage

0. Prepare the NAS Benchmarks

  • Follow the instructions here to install benchmark files for NAS-Bench-101.
  • Follow the instructions here to install benchmark files for NAS-Bench-201.
  • Optional: To evaluate IGD on the optimal front during a NAS run, for NAS-Bench-101, you need to download the pre-computed benchmark query data here and put it in the data folder.
  • Remember to properly set the benchmark paths in config files, default data path is ~/.torch.

1. Search

# Baseline MOENAS
python search.py -cfg config/baseline_moenas-101.yml --n_evals 5000 --pop_size 50 --loops_if_rand 30 -sw --use_archive

# Training-free MOENAS
python search.py -cfg config/tf_moenas-101.yml --n_evals 5000 --pop_size 50 --loops_if_rand 30 -sw --use_archive
# Baseline MOENAS
python search.py -cfg config/baseline_moenas-201.yml --n_evals 3000 --pop_size 50 --loops_if_rand 30 -sw --use_archive

# Training-free MOENAS
python search.py -cfg config/tf_moenas-201.yml --n_evals 3000 --pop_size 50 --loops_if_rand 30 -sw --use_archive

To evaluate IGD score on pre-computed optimal front during the search, simply provide --eval_igd flag.

For customized search, additional configurations can be modified through yaml config files in config folder.

Acknowledgement

Code inspired from:

About

[ICONIP 2021] "Training-Free Multi-Objective Evolutionary Neural Architecture Search via Neural Tangent Kernel and Number of Linear Regions" by Tu Do, Ngoc Hoang Luong

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages