Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 16 additions & 0 deletions tests/unit/test_generate_batch.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
from transformer_lens import HookedTransformer

def test_generate_batch():
"""
Test that batched and individual prompt generation produce the same outputs.
"""
model = HookedTransformer.from_pretrained("gpt2")
input_prompts = ["Hello, my dog is cute", "This is a much longer text. Hello, my cat is cute"]
orig_outputs = []
for prompt in input_prompts:
out = model.generate(prompt, verbose=False, do_sample=False)
orig_outputs.append(out)

batched_outputs = model.generate(input_prompts, verbose=False, do_sample=False)
for i in range(len(orig_outputs)):
assert orig_outputs[i] == batched_outputs[i]
17 changes: 12 additions & 5 deletions transformer_lens/HookedTransformer.py
Original file line number Diff line number Diff line change
Expand Up @@ -2095,7 +2095,7 @@ def generate(
freq_penalty: float = 0.0,
use_past_kv_cache: bool = True,
prepend_bos: Optional[bool] = USE_DEFAULT_VALUE,
padding_side: Optional[Literal["left", "right"]] = USE_DEFAULT_VALUE,
padding_side: Optional[Literal["left", "right"]] = "left",
return_type: Optional[str] = "input",
verbose: bool = True,
) -> Union[
Expand Down Expand Up @@ -2139,9 +2139,9 @@ def generate(
the BOS token to the input (applicable when input is a string). Defaults to None,
implying usage of self.cfg.default_prepend_bos (default is True unless specified
otherwise). Pass True or False to override the default.
padding_side (Union[Literal["left", "right"], None], optional): Overrides
self.tokenizer.padding_side. Specifies which side to pad when tokenizing multiple
strings of different lengths.
padding_side (Union[Literal["left", "right"], None], optional): Specifies which side to
pad when tokenizing multiple strings of different lengths. Defaults to left for
correct generation behavior. If None uses self.tokenizer.padding_side.
return_type (Optional[str]): The type of the output to return - a string or a list of strings ('str'),
a tensor of tokens ('tokens'), a tensor of output embeddings ('embeds') or whatever the format of the
input was ('input').
Expand Down Expand Up @@ -2240,7 +2240,11 @@ def generate(
for index in tqdm.tqdm(range(max_new_tokens), disable=not verbose):
pos_offset = self.get_pos_offset(past_kv_cache, batch_size)

tokens = torch.zeros((embeds.size(0), embeds.size(1))).to(torch.int)
if len(sampled_tokens_list) > 0:
sampled_tokens = torch.cat(sampled_tokens_list, dim=1)
tokens = torch.cat((input_tokens, sampled_tokens), dim=1)
else:
tokens = input_tokens
attention_mask = utils.get_attention_mask(
self.tokenizer, tokens, False if prepend_bos is None else prepend_bos
).to(device)
Expand All @@ -2267,6 +2271,7 @@ def generate(
past_kv_cache=past_kv_cache,
start_at_layer=start_at_layer,
shortformer_pos_embed=shortformer_pos_embed,
attention_mask=attention_mask,
)
else:
logits = self.forward(
Expand All @@ -2277,6 +2282,7 @@ def generate(
past_kv_cache=past_kv_cache,
start_at_layer=start_at_layer,
shortformer_pos_embed=shortformer_pos_embed,
attention_mask=attention_mask,
)
else:
# We input the entire sequence, as a [batch, pos] tensor, since we aren't using
Expand All @@ -2288,6 +2294,7 @@ def generate(
padding_side=padding_side,
start_at_layer=start_at_layer,
shortformer_pos_embed=shortformer_pos_embed,
attention_mask=attention_mask,
)
final_logits = logits[:, -1, :]

Expand Down
Loading