Skip to content
Merged
37 changes: 37 additions & 0 deletions machine_learning/loss_functions.py
Original file line number Diff line number Diff line change
Expand Up @@ -261,6 +261,43 @@ def mean_squared_error(y_true: np.ndarray, y_pred: np.ndarray) -> float:
return np.mean(squared_errors)


def mean_absolute_error(y_true: np.ndarray, y_pred: np.ndarray) -> float:
"""
Calculates the Mean Absolute Error (MAE) between ground truth (observed)
and predicted values.

MAE measures the absolute difference between true values and predicted values.

Equation:
MAE = (1/n) * Σ(abs(y_true - y_pred))

Reference: https://en.wikipedia.org/wiki/Mean_absolute_error

Parameters:
- y_true: The true values (ground truth)
- y_pred: The predicted values

>>> true_values = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
>>> predicted_values = np.array([0.8, 2.1, 2.9, 4.2, 5.2])
>>> np.isclose(mean_absolute_error(true_values, predicted_values), 0.16)
True
>>> true_values = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
>>> predicted_values = np.array([0.8, 2.1, 2.9, 4.2, 5.2])
>>> np.isclose(mean_absolute_error(true_values, predicted_values), 2.16)
False
>>> true_labels = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
>>> predicted_probs = np.array([0.3, 0.8, 0.9, 5.2])
>>> mean_absolute_error(true_labels, predicted_probs)
Traceback (most recent call last):
...
ValueError: Input arrays must have the same length.
"""
if len(y_true) != len(y_pred):
raise ValueError("Input arrays must have the same length.")

return np.mean(abs(y_true - y_pred))


def mean_squared_logarithmic_error(y_true: np.ndarray, y_pred: np.ndarray) -> float:
"""
Calculate the mean squared logarithmic error (MSLE) between ground truth and
Expand Down