Modified from https://github.com/xiongyihui/speexdsp-python
You can use it in Noise reduction model training as said in Personalized PercepNet: Real-time, Low-complexity Target Voice Separation and Enhancement.
Use a VAD and lightweight denoiser (SpeexDSP1) to eliminate the stationary noise before using this data for training.
- swig
- compile toolchain
- python
- libspeexdsp-dev
sudo apt install libspeexdsp-dev
sudo apt install swig
python setup.py install
"""Acoustic Noise Suppression for wav files."""
import wave
import sys
from speexdsp_ns import NoiseSuppression
if len(sys.argv) < 3:
print('Usage: {} near.wav out.wav'.format(sys.argv[0]))
sys.exit(1)
frame_size = 256
near = wave.open(sys.argv[1], 'rb')
if near.getnchannels() > 1:
print('Only support mono channel')
sys.exit(2)
out = wave.open(sys.argv[2], 'wb')
out.setnchannels(near.getnchannels())
out.setsampwidth(near.getsampwidth())
out.setframerate(near.getframerate())
print('near - rate: {}, channels: {}, length: {}'.format(
near.getframerate(),
near.getnchannels(),
near.getnframes() / near.getframerate()))
noise_suppression = NoiseSuppression.create(frame_size, near.getframerate())
in_data_len = frame_size
in_data_bytes = frame_size * 2
while True:
in_data = near.readframes(in_data_len)
if len(in_data) != in_data_bytes:
break
in_data = noise_suppression.process(in_data)
out.writeframes(in_data)
near.close()
out.close()
or
python examples/main.py in.wav out.wav
Noise suppression as show in figure below: