Cummulative object counting with Tensorflow 2 and Tensorflow Lite.
-
Clone the repository
git clone https://github.com/TannerGilbert/Tensorflow-2-Object-Counting
-
Install dependencies
cd Tensorflow-2-Object-Counting pip3 install -r requirements.txt
To run cumulative counting with a Tensorflow object detection model use the tensorflow_cumulative_object_counting.py
script.
usage: tensorflow_cumulative_object_counting.py [-h] -m MODEL -l LABELMAP [-v VIDEO_PATH] [-t THRESHOLD] [-roi ROI_POSITION] [-la LABELS [LABELS ...]] [-a] [-s SKIP_FRAMES] [-sh] [-sp SAVE_PATH]
Detect objects inside webcam videostream
optional arguments:
-h, --help show this help message and exit
-m MODEL, --model MODEL
Model Path
-l LABELMAP, --labelmap LABELMAP
Path to Labelmap
-v VIDEO_PATH, --video_path VIDEO_PATH
Path to video. If None camera will be used
-t THRESHOLD, --threshold THRESHOLD
Detection threshold
-roi ROI_POSITION, --roi_position ROI_POSITION
ROI Position (0-1)
-la LABELS [LABELS ...], --labels LABELS [LABELS ...]
Label names to detect (default="all-labels")
-a, --axis Axis for cumulative counting (default=x axis)
-s SKIP_FRAMES, --skip_frames SKIP_FRAMES
Number of frames to skip between using object detection model
-sh, --show Show output
-sp SAVE_PATH, --save_path SAVE_PATH
Path to save the output. If None output won't be saved
Example:
python tensorflow_cumulative_object_counting.py -m model_path/saved_model -l labelmap.pbtxt -v video.mp4 -a
To run cumulative counting with a Tensorflow Lite model use the tflite_cumulative_object_counting.py
script.
usage: tflite_cumulative_object_counting.py [-h] -m MODEL -l LABELMAP [-v VIDEO_PATH] [-t THRESHOLD] [-roi ROI_POSITION] [-la LABELS [LABELS ...]] [-a] [-e] [-s SKIP_FRAMES] [-sh] [-sp SAVE_PATH] [--type {tensorflow,yolo,yolov3-tiny}]
optional arguments:
-h, --help show this help message and exit
-m MODEL, --model MODEL
File path of .tflite file. (default: None)
-l LABELMAP, --labelmap LABELMAP
File path of labels file. (default: None)
-v VIDEO_PATH, --video_path VIDEO_PATH
Path to video. If None camera will be used (default: )
-t THRESHOLD, --threshold THRESHOLD
Detection threshold (default: 0.5)
-roi ROI_POSITION, --roi_position ROI_POSITION
ROI Position (0-1) (default: 0.6)
-la LABELS [LABELS ...], --labels LABELS [LABELS ...]
Label names to detect (default="all-labels") (default: None)
-a, --axis Axis for cumulative counting (default=x axis) (default: True)
-e, --use_edgetpu Use EdgeTPU (default: False)
-s SKIP_FRAMES, --skip_frames SKIP_FRAMES
Number of frames to skip between using object detection model (default: 20)
-sh, --show Show output (default: True)
-sp SAVE_PATH, --save_path SAVE_PATH
Path to save the output. If None output won't be saved (default: )
--type {tensorflow,yolo,yolov3-tiny}
Whether the original model was a Tensorflow or YOLO model (default: tensorflow)
Example:
python tflite_cumulative_object_counting.py -m model.tflite -l labelmap.txt -v video.mp4 -a
This project was inspired by OpenCV People Counter and the tensorflow_object_counting_api.