Skip to content

Tafara-N/sorting_algorithms

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

79 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ALGORITHMS

Background Context

This project is meant to be done by groups of two students. Each group of two should pair program for at least the mandatory part.

Resources

Read or watch:

Learning Objectives

At the end of this project, you are expected to be able to explain to anyone, without the help of Google:

General

  • At least four different sorting algorithms
  • What is the Big O notation, and how to evaluate the time complexity of an algorithm
  • How to select the best sorting algorithm for a given input
  • What is a stable sorting algorithm

Requirements

General

  • Allowed editors: vi, vim, emacs
  • All your files will be compiled on Ubuntu 20.04 LTS using gcc, using the options -Wall -Werror -Wextra -pedantic -std=gnu89
  • All your files should end with a new line
  • A README.md file, at the root of the folder of the project, is mandatory
  • Your code should use the Betty style. It will be checked using betty-style.pl and betty-doc.pl
  • You are not allowed to use global variables
  • No more than 5 functions per file
  • Unless specified otherwise, you are not allowed to use the standard library. Any use of functions like printf, puts, is totally forbidden.
  • In the following examples, the main.c files are shown as examples. You can use them to test your functions, but you don’t have to push them to your repo (if you do we won’t take them into account). We will use our own main.c files at compilation. Our main.c files might be different from the one shown in the examples
  • The prototypes of all your functions should be included in your header file called sort.h
  • Don’t forget to push your header file
  • All your header files should be include guarded
  • A list/array does not need to be sorted if its size is less than 2.

More Info

Data Structure and Functions

  • For this project you are given the following print_array, and print_list functions:
#include <stdlib.h>
#include <stdio.h>

/**
 * print_array - Prints an array of integers
 *
 * @array: The array to be printed
 * @size: Number of elements in @array
 */
void print_array(const int *array, size_t size)
{
    size_t i;

    i = 0;
    while (array && i < size)
    {
        if (i > 0)
            printf(", ");
        printf("%d", array[i]);
        ++i;
    }
    printf("\n");
}
#include <stdio.h>
#include "sort.h"

/**
 * print_list - Prints a list of integers
 *
 * @list: The list to be printed
 */
void print_list(const listint_t *list)
{
    int i;

    i = 0;
    while (list)
    {
        if (i > 0)
            printf(", ");
        printf("%d", list->n);
        ++i;
        list = list->next;
    }
    printf("\n");
}
  • Our files print_array.c and print_list.c (containing the print_array and print_list functions) will be compiled with your functions during the correction.
  • Please declare the prototype of the functions print_array and print_list in your sort.h header file
  • Please use the following data structure for doubly linked list:
/**
 * struct listint_s - Doubly linked list node
 *
 * @n: Integer stored in the node
 * @prev: Pointer to the previous element of the list
 * @next: Pointer to the next element of the list
 */
typedef struct listint_s
{
    const int n;
    struct listint_s *prev;
    struct listint_s *next;
} listint_t;

Please, note this format is used for Quiz and Task questions.

  • O(1)
  • O(n)
  • O(n!)
  • n square -> O(n^2)
  • log(n) -> O(log(n))
  • n * log(n) -> O(nlog(n))
  • n + k -> O(n+k)

Please use the “short” notation (don’t use constants). Example: O(nk) or O(wn) should be written O(n). If an answer is required within a file, all your answers files must have a newline at the end.

Tests

Here is a quick tip to help you test your sorting algorithms with big sets of random integers: Random.org

Quiz questions

Question #0

What is the time complexity of the “push” operation onto a stack?

  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #1

What is the time complexity of worst case deletion from a hash table with the implementation you used during the previous Hash Table C project (chaining)?

  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #2

What is the time complexity of removing the nth element of a singly linked list? (Assuming you have a pointer to the node to remove)

  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #3

Assuming you have a pointer to the node to remove, what is the time complexity of removing the nth element of a doubly linked list?

  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #4

What is the time complexity of searching for an element in a stack of size n?

  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #5

What is the time complexity of “pushing” an element into a queue if you are given a pointer to both the head and the tail of the queue?

  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #6

What is the time complexity of inserting at index n on an unsorted array?

  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #7

What is the time complexity of inserting into an unsorted Python 3 list at index n?

  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #8

Assuming you have a pointer to the node to insert, what is the time complexity of inserting after the nth element of a doubly linked list?

  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #9

What is the time complexity of searching for an element in a singly linked list of size n?

  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #10

What is the time complexity of accessing the nth element on an unsorted array?

  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #11

What is the time complexity of accessing the nth element of a singly linked list?

  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #12

What is the time complexity of “popping” an element in a queue if you are given a pointer to both the head and the tail of the queue?

  • O(2^n)

  • O(nlog(n))

  • O(1)

  • O(n)

  • O(log(n))

  • O(n!)

Question #13

What is the time complexity of this function / algorithm?

void f(int n)
{
    int i;
    int j;

    for (i = 0; i < n; i++)
    {
        if (i % 2 == 0)
        {
            for (j = 1; j < n; j = j * 2)
            {
                printf("[%d] [%d]\n", i, j);
            }
        }
        else
        {
            for (j = 0; j < n; j = j + 2)
            {
                printf("[%d] [%d]\n", i, j);
            }
        }
    }
}
  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #14

What is the best case time complexity of insertion in a hash table with the implementation you used during the previous Hash Table C project (chaining)?

  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #15

What is the time complexity of this function / algorithm?

int Fibonacci(int number)
{
    if (number <= 1) return number;

    return Fibonacci(number - 2) + Fibonacci(number - 1);
}
  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #16

What is the time complexity of removing at index n in an unsorted array?

  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #17

What is the time complexity of this function / algorithm?

void f(int n)
{
    printf("n = %d\n", n);
}
  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #18

What is the time complexity of accessing the nth element of a doubly linked list?

  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #19

Assuming you have a pointer to the node to set the value of, what is the time complexity of setting the value of the nth element in a doubly linked list?

  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #20

What is the time complexity of setting value at index n in an unsorted Python 3 list?

  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #21

What is the time complexity of this function / algorithm?

void f(unsigned int n)
{
    int i;

    for (i = 1; i < n; i = i * 2)
    {
        printf("[%d]\n", i);
    }
}
  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #22

What is the time complexity of this function / algorithm?

void f(int n)
{
    int i;

    for (i = 0; i < n; i++)
    {
        printf("[%d]\n", i);
    }
}
  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #23

What is the time complexity of removing at index n from an unsorted Python 3 list?

  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #24

What is the time complexity of this function / algorithm?

def func(n):
    a=5
    b=6
    c=10
    for i in range(n):
        for j in range(n):
            x = i * i
            y = j * j
            z = i * j
    for k in range(n):
        w = a*k + 45
        v = b*b
    d = 33
  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #25

What is the time complexity of this function / algorithm?

void f(int n)
{
    int i;

    for (i = 0; i < n; i += 98)
    {
        printf("[%d]\n", i);
    }
}
  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #26

What is the time complexity of best case deletion from a hash table with the implementation you used during the previous Hash Table C project (chaining)?

  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #27

What is the time complexity of this function / algorithm?

var factorial = function(n) {
    if(n == 0) {
        return 1
    } else {
        return n * factorial(n - 1);
    }
}
  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #28

What is the worst case time complexity of insertion in a hash table with the implementation you used during the previous Hash Table C project (chaining)?

  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #29

What is the time complexity of this function / algorithm?

void f(unsigned int n)
{
    int i;
    int j;

    for (i = 0; i < n; i++)
    {
        for (j = 1; j < n; j = j * 2)
        {
            printf("[%d] [%d]\n", i, j);
        }
    }
}
  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #30

What is the best case time complexity searching for an element in a hash table with the implementation you used during the previous Hash Table C project (chaining)?

  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #31

What is the time complexity of this function / algorithm?

foreach($numbers as $number)
{
    echo $number;
}
  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #32

What is the time complexity of inserting after the nth element of a singly linked list? (Assuming you have a pointer to the node to insert)

  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #33

What is the time complexity of setting the value of the nth element in a singly linked list? (Assuming you have a pointer to the node to set the value of)

  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #34

What is the time complexity of setting a value at index n in an unsorted array?

  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #35

What is the time complexity of the “pop” operation onto a stack?

  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #36

What is the time complexity accessing the nth element in an unsorted Python 3 list?

  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #37

What is the time complexity of searching for an element - worst case - in a hash table with the implementation you used during the previous Hash Table C project (chaining)?

  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #38

What is the time complexity of searching for an element in a queue of size n if you are given a pointer to both the head and the tail of the queue?

  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #39

What is the time complexity of searching for an element in a doubly linked list of size n?

  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #40

What is the time complexity of searching for an element in an unsorted array of size n?

  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #41

What is the time complexity of this function / algorithm?

void f(int n)
{
     int i;
     int j;

     for (i = 0; i < n; i++)
     {
          for (j = i + 1; j < n; j++)
          {
               printf("[%d] [%d]\n", i, j);
          }
     }
}
  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Question #42

What is the time complexity of searching for an element in an unsorted Python 3 list of size n?

  • O(2^n)

  • O(1)

  • O(nlog(n))

  • O(n)

  • O(log(n))

  • O(n^2)

  • O(n!)

Tasks

0. Bubble sort

YouTube

Write a function that sorts an array of integers in ascending order using the Bubble sort algorithm

  • Prototype: void bubble_sort(int *array, size_t size);
  • You’re expected to print the array after each time you swap two elements (See example below)

Write in the file 0-O, the big O notations of the time complexity of the Bubble sort algorithm, with 1 notation per line:

  • in the best case
  • in the average case
  • in the worst case
alex@/tmp/sort$ cat 0-main.c
#include <stdio.h>
#include <stdlib.h>
#include "sort.h"

/**
 * main - Entry point
 *
 * Return: Always 0
 */
int main(void)
{
    int array[] = {19, 48, 99, 71, 13, 52, 96, 73, 86, 7};
    size_t n = sizeof(array) / sizeof(array[0]);

    print_array(array, n);
    printf("\n");
    bubble_sort(array, n);
    printf("\n");
    print_array(array, n);
    return (0);
}
alex@/tmp/sort$ gcc -Wall -Wextra -Werror -pedantic  -std=gnu89 0-bubble_sort.c 0-main.c print_array.c -o bubble
alex@/tmp/sort$ ./bubble
19, 48, 99, 71, 13, 52, 96, 73, 86, 7

19, 48, 71, 99, 13, 52, 96, 73, 86, 7
19, 48, 71, 13, 99, 52, 96, 73, 86, 7
19, 48, 71, 13, 52, 99, 96, 73, 86, 7
19, 48, 71, 13, 52, 96, 99, 73, 86, 7
19, 48, 71, 13, 52, 96, 73, 99, 86, 7
19, 48, 71, 13, 52, 96, 73, 86, 99, 7
19, 48, 71, 13, 52, 96, 73, 86, 7, 99
19, 48, 13, 71, 52, 96, 73, 86, 7, 99
19, 48, 13, 52, 71, 96, 73, 86, 7, 99
19, 48, 13, 52, 71, 73, 96, 86, 7, 99
19, 48, 13, 52, 71, 73, 86, 96, 7, 99
19, 48, 13, 52, 71, 73, 86, 7, 96, 99
19, 13, 48, 52, 71, 73, 86, 7, 96, 99
19, 13, 48, 52, 71, 73, 7, 86, 96, 99
13, 19, 48, 52, 71, 73, 7, 86, 96, 99
13, 19, 48, 52, 71, 7, 73, 86, 96, 99
13, 19, 48, 52, 7, 71, 73, 86, 96, 99
13, 19, 48, 7, 52, 71, 73, 86, 96, 99
13, 19, 7, 48, 52, 71, 73, 86, 96, 99
13, 7, 19, 48, 52, 71, 73, 86, 96, 99
7, 13, 19, 48, 52, 71, 73, 86, 96, 99

7, 13, 19, 48, 52, 71, 73, 86, 96, 99
alex@/tmp/sort$

Repo:

  • GitHub repository: sorting_algorithms
  • File: 0-bubble_sort.c, 0-O

1. Insertion sort

YouTube

Write a function that sorts a doubly linked list of integers in ascending order using the Insertion sort algorithm

  • Prototype: void insertion_sort_list(listint_t **list);
  • You are not allowed to modify the integer n of a node. You have to swap the nodes themselves.
  • You’re expected to print the list after each time you swap two elements (See example below)

Write in the file 1-O, the big O notations of the time complexity of the Insertion sort algorithm, with 1 notation per line:

  • in the best case
  • in the average case
  • in the worst case
alex@/tmp/sort$ cat 1-main.c
#include <stdio.h>
#include <stdlib.h>
#include "sort.h"

/**
 * create_listint - Creates a doubly linked list from an array of integers
 *
 * @array: Array to convert to a doubly linked list
 * @size: Size of the array
 *
 * Return: Pointer to the first element of the created list. NULL on failure
 */
listint_t *create_listint(const int *array, size_t size)
{
    listint_t *list;
    listint_t *node;
    int *tmp;

    list = NULL;
    while (size--)
    {
        node = malloc(sizeof(*node));
        if (!node)
            return (NULL);
        tmp = (int *)&node->n;
        *tmp = array[size];
        node->next = list;
        node->prev = NULL;
        list = node;
        if (list->next)
            list->next->prev = list;
    }
    return (list);
}

/**
 * main - Entry point
 *
 * Return: Always 0
 */
int main(void)
{
    listint_t *list;
    int array[] = {19, 48, 99, 71, 13, 52, 96, 73, 86, 7};
    size_t n = sizeof(array) / sizeof(array[0]);

    list = create_listint(array, n);
    if (!list)
        return (1);
    print_list(list);
    printf("\n");
    insertion_sort_list(&list);
    printf("\n");
    print_list(list);
    return (0);
}
alex@/tmp/sort$ gcc -Wall -Wextra -Werror -pedantic  -std=gnu89 1-main.c 1-insertion_sort_list.c print_list.c -o insertion
alex@/tmp/sort$ ./insertion
19, 48, 99, 71, 13, 52, 96, 73, 86, 7

19, 48, 71, 99, 13, 52, 96, 73, 86, 7
19, 48, 71, 13, 99, 52, 96, 73, 86, 7
19, 48, 13, 71, 99, 52, 96, 73, 86, 7
19, 13, 48, 71, 99, 52, 96, 73, 86, 7
13, 19, 48, 71, 99, 52, 96, 73, 86, 7
13, 19, 48, 71, 52, 99, 96, 73, 86, 7
13, 19, 48, 52, 71, 99, 96, 73, 86, 7
13, 19, 48, 52, 71, 96, 99, 73, 86, 7
13, 19, 48, 52, 71, 96, 73, 99, 86, 7
13, 19, 48, 52, 71, 73, 96, 99, 86, 7
13, 19, 48, 52, 71, 73, 96, 86, 99, 7
13, 19, 48, 52, 71, 73, 86, 96, 99, 7
13, 19, 48, 52, 71, 73, 86, 96, 7, 99
13, 19, 48, 52, 71, 73, 86, 7, 96, 99
13, 19, 48, 52, 71, 73, 7, 86, 96, 99
13, 19, 48, 52, 71, 7, 73, 86, 96, 99
13, 19, 48, 52, 7, 71, 73, 86, 96, 99
13, 19, 48, 7, 52, 71, 73, 86, 96, 99
13, 19, 7, 48, 52, 71, 73, 86, 96, 99
13, 7, 19, 48, 52, 71, 73, 86, 96, 99
7, 13, 19, 48, 52, 71, 73, 86, 96, 99

7, 13, 19, 48, 52, 71, 73, 86, 96, 99
alex@/tmp/sort$

Repo:

  • GitHub repository: sorting_algorithms
  • File: 1-insertion_sort_list.c, 1-O

2. Selection sort

YouTube

Write a function that sorts an array of integers in ascending order using the Selection sort algorithm

  • Prototype: void selection_sort(int *array, size_t size);
  • You’re expected to print the array after each time you swap two elements (See example below)

Write in the file 2-O, the big O notations of the time complexity of the Selection sort algorithm, with 1 notation per line:

  • in the best case
  • in the average case
  • in the worst case
alex@/tmp/sort$ cat 2-main.c
#include <stdio.h>
#include <stdlib.h>
#include "sort.h"

/**
 * main - Entry point
 *
 * Return: Always 0
 */
int main(void)
{
    int array[] = {19, 48, 99, 71, 13, 52, 96, 73, 86, 7};
    size_t n = sizeof(array) / sizeof(array[0]);

    print_array(array, n);
    printf("\n");
    selection_sort(array, n);
    printf("\n");
    print_array(array, n);
    return (0);
}
alex@/tmp/sort$ gcc -Wall -Wextra -Werror -pedantic  -std=gnu89
2-main.c 2-selection_sort.c print_array.c -o select
alex@/tmp/sort$ ./select
19, 48, 99, 71, 13, 52, 96, 73, 86, 7

7, 48, 99, 71, 13, 52, 96, 73, 86, 19
7, 13, 99, 71, 48, 52, 96, 73, 86, 19
7, 13, 19, 71, 48, 52, 96, 73, 86, 99
7, 13, 19, 48, 71, 52, 96, 73, 86, 99
7, 13, 19, 48, 52, 71, 96, 73, 86, 99
7, 13, 19, 48, 52, 71, 73, 96, 86, 99
7, 13, 19, 48, 52, 71, 73, 86, 96, 99

7, 13, 19, 48, 52, 71, 73, 86, 96, 99
alex@/tmp/sort$

Repo:

  • GitHub repository: sorting_algorithms
  • File: 2-selection_sort.c, 2-O

3. Quick sort

YouTube

Write a function that sorts an array of integers in ascending order using the Quick sort algorithm

  • Prototype: void quick_sort(int *array, size_t size);
  • You must implement the Lomuto partition scheme.
  • The pivot should always be the last element of the partition being sorted.
  • You’re expected to print the array after each time you swap two elements (See example below)

Write in the file 3-O, the big O notations of the time complexity of the Quick sort algorithm, with 1 notation per line:

  • in the best case
  • in the average case
  • in the worst case
alex@/tmp/sort$ cat 3-main.c
#include <stdio.h>
#include <stdlib.h>
#include "sort.h"

/**
 * main - Entry point
 *
 * Return: Always 0
 */
int main(void)
{
    int array[] = {19, 48, 99, 71, 13, 52, 96, 73, 86, 7};
    size_t n = sizeof(array) / sizeof(array[0]);

    print_array(array, n);
    printf("\n");
    quick_sort(array, n);
    printf("\n");
    print_array(array, n);
    return (0);
}
alex@/tmp/sort$ gcc -Wall -Wextra -Werror -pedantic  -std=gnu89 3-main.c 3-quick_sort.c print_array.c -o quick
alex@/tmp/sort$ ./quick
19, 48, 99, 71, 13, 52, 96, 73, 86, 7

7, 48, 99, 71, 13, 52, 96, 73, 86, 19
7, 13, 99, 71, 48, 52, 96, 73, 86, 19
7, 13, 19, 71, 48, 52, 96, 73, 86, 99
7, 13, 19, 71, 48, 52, 73, 96, 86, 99
7, 13, 19, 71, 48, 52, 73, 86, 96, 99
7, 13, 19, 48, 71, 52, 73, 86, 96, 99
7, 13, 19, 48, 52, 71, 73, 86, 96, 99

7, 13, 19, 48, 52, 71, 73, 86, 96, 99
alex@/tmp/sort$

Repo:

  • GitHub repository: sorting_algorithms
  • File: 3-quick_sort.c, 3-O

4. Shell sort - Knuth Sequence

Write a function that sorts an array of integers in ascending order using the Shell sort algorithm, using the Knuth sequence

  • Prototype: void shell_sort(int *array, size_t size);
  • You must use the following sequence of intervals (a.k.a the Knuth sequence):
    • n+1 = n * 3 + 1
    • 1, 4, 13, 40, 121, ...
  • You’re expected to print the array each time you decrease the interval (See example below).

No big O notations of the time complexity of the Shell sort (Knuth sequence) algorithm needed - as the complexity is dependent on the size of array and gap

alex@/tmp/sort$ cat 100-main.c
#include <stdio.h>
#include <stdlib.h>
#include "sort.h"

/**
 * main - Entry point
 *
 * Return: Always 0
 */
int main(void)
{
    int array[] = {19, 48, 99, 71, 13, 52, 96, 73, 86, 7};
    size_t n = sizeof(array) / sizeof(array[0]);

    print_array(array, n);
    printf("\n");
    shell_sort(array, n);
    printf("\n");
    print_array(array, n);
    return (0);
}
alex@/tmp/sort$ gcc -Wall -Wextra -Werror -pedantic  -std=gnu89 100-main.c 100-shell_sort.c print_array.c -o shell
alex@/tmp/sort$ ./shell
19, 48, 99, 71, 13, 52, 96, 73, 86, 7

13, 7, 96, 71, 19, 48, 99, 73, 86, 52
7, 13, 19, 48, 52, 71, 73, 86, 96, 99

7, 13, 19, 48, 52, 71, 73, 86, 96, 99
alex@/tmp/sort$

Repo:

  • GitHub repository: sorting_algorithms
  • File: 100-shell_sort.c

5. Cocktail shaker sort

Write a function that sorts a doubly linked list of integers in ascending order using the Cocktail shaker sort algorithm

  • Prototype: void cocktail_sort_list(listint_t **list);
  • You are not allowed to modify the integer n of a node. You have to swap the nodes themselves.
  • You’re expected to print the list after each time you swap two elements (See example below)

Write in the file 101-O, the big O notations of the time complexity of the Cocktail shaker sort algorithm, with 1 notation per line:

  • in the best case
  • in the average case
  • in the worst case
alex@/tmp/sort$ cat 101-main.c
#include <stdio.h>
#include <stdlib.h>
#include "sort.h"

/**
 * create_listint - Creates a doubly linked list from an array of integers
 *
 * @array: Array to convert to a doubly linked list
 * @size: Size of the array
 *
 * Return: Pointer to the first element of the created list. NULL on failure
 */
listint_t *create_listint(const int *array, size_t size)
{
    listint_t *list;
    listint_t *node;
    int *tmp;

    list = NULL;
    while (size--)
    {
        node = malloc(sizeof(*node));
        if (!node)
            return (NULL);
        tmp = (int *)&node->n;
        *tmp = array[size];
        node->next = list;
        node->prev = NULL;
        list = node;
        if (list->next)
            list->next->prev = list;
    }
    return (list);
}

/**
 * main - Entry point
 *
 * Return: Always 0
 */
int main(void)
{
    listint_t *list;
    int array[] = {19, 48, 99, 71, 13, 52, 96, 73, 86, 7};
    size_t n = sizeof(array) / sizeof(array[0]);

    list = create_listint(array, n);
    if (!list)
        return (1);
    print_list(list);
    printf("\n");
    cocktail_sort_list(&list);
    printf("\n");
    print_list(list);
    return (0);
}
alex@/tmp/sort$ gcc -Wall -Wextra -Werror -pedantic  -std=gnu89 101-main.c 101-cocktail_sort_list.c print_list.c -o cocktail
alex@/tmp/sort$ ./cocktail
19, 48, 99, 71, 13, 52, 96, 73, 86, 7

19, 48, 71, 99, 13, 52, 96, 73, 86, 7
19, 48, 71, 13, 99, 52, 96, 73, 86, 7
19, 48, 71, 13, 52, 99, 96, 73, 86, 7
19, 48, 71, 13, 52, 96, 99, 73, 86, 7
19, 48, 71, 13, 52, 96, 73, 99, 86, 7
19, 48, 71, 13, 52, 96, 73, 86, 99, 7
19, 48, 71, 13, 52, 96, 73, 86, 7, 99
19, 48, 71, 13, 52, 96, 73, 7, 86, 99
19, 48, 71, 13, 52, 96, 7, 73, 86, 99
19, 48, 71, 13, 52, 7, 96, 73, 86, 99
19, 48, 71, 13, 7, 52, 96, 73, 86, 99
19, 48, 71, 7, 13, 52, 96, 73, 86, 99
19, 48, 7, 71, 13, 52, 96, 73, 86, 99
19, 7, 48, 71, 13, 52, 96, 73, 86, 99
7, 19, 48, 71, 13, 52, 96, 73, 86, 99
7, 19, 48, 13, 71, 52, 96, 73, 86, 99
7, 19, 48, 13, 52, 71, 96, 73, 86, 99
7, 19, 48, 13, 52, 71, 73, 96, 86, 99
7, 19, 48, 13, 52, 71, 73, 86, 96, 99
7, 19, 13, 48, 52, 71, 73, 86, 96, 99
7, 13, 19, 48, 52, 71, 73, 86, 96, 99

7, 13, 19, 48, 52, 71, 73, 86, 96, 99
alex@/tmp/sort$

Repo:

  • GitHub repository: sorting_algorithms
  • File: 101-cocktail_sort_list.c, 101-O

6. Counting sort

Write a function that sorts an array of integers in ascending order using the Counting sort algorithm

  • Prototype: void counting_sort(int *array, size_t size); You can assume that array will contain only numbers >= 0 You are allowed to use malloc and free for this task You’re expected to print your counting array once it is set up (See example below)
    • This array is of size k + 1 where k is the largest number in array

Write in the file 102-O, the big O notations of the time complexity of the Counting sort algorithm, with 1 notation per line:

  • in the best case
  • in the average case
  • in the worst case
alex@/tmp/sort$ cat 102-main.c
#include <stdio.h>
#include <stdlib.h>
#include "sort.h"

/**
 * main - Entry point
 *
 * Return: Always 0
 */
int main(void)
{
    int array[] = {19, 48, 99, 71, 13, 52, 96, 73, 86, 7};
    size_t n = sizeof(array) / sizeof(array[0]);

    print_array(array, n);
    printf("\n");
    counting_sort(array, n);
    printf("\n");
    print_array(array, n);
    return (0);
}
alex@/tmp/sort$ gcc -Wall -Wextra -Werror -pedantic  -std=gnu89 102-main.c 102-counting_sort.c print_array.c -o counting
alex@/tmp/sort$ ./counting
19, 48, 99, 71, 13, 52, 96, 73, 86, 7

0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 10

7, 13, 19, 48, 52, 71, 73, 86, 96, 99
alex@/tmp/sort$

Repo:

  • GitHub repository: sorting_algorithms
  • File: 102-counting_sort.c, 102-O

7. Merge sort

Write a function that sorts an array of integers in ascending order using the Merge sort algorithm

  • Prototype: void merge_sort(int *array, size_t size);
  • You must implement the top-down merge sort algorithm
    • When you divide an array into two sub-arrays, the size of the left array should always be <= the size of the right array. i.e. {1, 2, 3, 4, 5} -> {1, 2}, {3, 4, 5}
    • Sort the left array before the right array
  • You are allowed to use printf
  • You are allowed to use malloc and free only once (only one call)
  • Output: see example

Write in the file 103-O, the big O notations of the time complexity of the Merge sort algorithm, with 1 notation per line:

  • in the best case
  • in the average case
  • in the worst case
alex@/tmp/sort$ cat 103-main.c
#include <stdio.h>
#include <stdlib.h>
#include "sort.h"

/**
 * main - Entry point
 *
 * Return: Always 0
 */
int main(void)
{
    int array[] = {19, 48, 99, 71, 13, 52, 96, 73, 86, 7};
    size_t n = sizeof(array) / sizeof(array[0]);

    print_array(array, n);
    printf("\n");
    merge_sort(array, n);
    printf("\n");
    print_array(array, n);
    return (0);
}
alex@/tmp/sort$ gcc -Wall -Wextra -Werror -pedantic  -std=gnu89 103-main.c 103-merge_sort.c print_array.c -o merge
alex@/tmp/sort$ ./merge
19, 48, 99, 71, 13, 52, 96, 73, 86, 7

Merging...
[left]: 19
[right]: 48
[Done]: 19, 48
Merging...
[left]: 71
[right]: 13
[Done]: 13, 71
Merging...
[left]: 99
[right]: 13, 71
[Done]: 13, 71, 99
Merging...
[left]: 19, 48
[right]: 13, 71, 99
[Done]: 13, 19, 48, 71, 99
Merging...
[left]: 52
[right]: 96
[Done]: 52, 96
Merging...
[left]: 86
[right]: 7
[Done]: 7, 86
Merging...
[left]: 73
[right]: 7, 86
[Done]: 7, 73, 86
Merging...
[left]: 52, 96
[right]: 7, 73, 86
[Done]: 7, 52, 73, 86, 96
Merging...
[left]: 13, 19, 48, 71, 99
[right]: 7, 52, 73, 86, 96
[Done]: 7, 13, 19, 48, 52, 71, 73, 86, 96, 99

7, 13, 19, 48, 52, 71, 73, 86, 96, 99
alex@/tmp/sort$

Repo:

  • GitHub repository: sorting_algorithms
  • File: 103-merge_sort.c, 103-O

8. Heap sort

Write a function that sorts an array of integers in ascending order using the Heap sort algorithm

  • Prototype: void heap_sort(int *array, size_t size);
  • You must implement the sift-down heap sort algorithm
  • You’re expected to print the array after each time you swap two elements (See example below)

Write in the file 104-O, the big O notations of the time complexity of the Heap sort algorithm, with 1 notation per line:

  • in the best case
  • in the average case
  • in the worst case
alex@/tmp/sort$ cat 104-main.c
#include <stdio.h>
#include <stdlib.h>
#include "sort.h"

/**
 * main - Entry point
 *
 * Return: Always 0
 */
int main(void)
{
    int array[] = {19, 48, 99, 71, 13, 52, 96, 73, 86, 7};
    size_t n = sizeof(array) / sizeof(array[0]);

    print_array(array, n);
    printf("\n");
    heap_sort(array, n);
    printf("\n");
    print_array(array, n);
    return (0);
}
alex@/tmp/sort$ gcc -Wall -Wextra -Werror -pedantic  -std=gnu89 104-main.c 104-heap_sort.c print_array.c -o heap
alex@/tmp/sort$ ./heap
19, 48, 99, 71, 13, 52, 96, 73, 86, 7

19, 48, 99, 86, 13, 52, 96, 73, 71, 7
19, 86, 99, 48, 13, 52, 96, 73, 71, 7
19, 86, 99, 73, 13, 52, 96, 48, 71, 7
99, 86, 19, 73, 13, 52, 96, 48, 71, 7
99, 86, 96, 73, 13, 52, 19, 48, 71, 7
7, 86, 96, 73, 13, 52, 19, 48, 71, 99
96, 86, 7, 73, 13, 52, 19, 48, 71, 99
96, 86, 52, 73, 13, 7, 19, 48, 71, 99
71, 86, 52, 73, 13, 7, 19, 48, 96, 99
86, 71, 52, 73, 13, 7, 19, 48, 96, 99
86, 73, 52, 71, 13, 7, 19, 48, 96, 99
48, 73, 52, 71, 13, 7, 19, 86, 96, 99
73, 48, 52, 71, 13, 7, 19, 86, 96, 99
73, 71, 52, 48, 13, 7, 19, 86, 96, 99
19, 71, 52, 48, 13, 7, 73, 86, 96, 99
71, 19, 52, 48, 13, 7, 73, 86, 96, 99
71, 48, 52, 19, 13, 7, 73, 86, 96, 99
7, 48, 52, 19, 13, 71, 73, 86, 96, 99
52, 48, 7, 19, 13, 71, 73, 86, 96, 99
13, 48, 7, 19, 52, 71, 73, 86, 96, 99
48, 13, 7, 19, 52, 71, 73, 86, 96, 99
48, 19, 7, 13, 52, 71, 73, 86, 96, 99
13, 19, 7, 48, 52, 71, 73, 86, 96, 99
19, 13, 7, 48, 52, 71, 73, 86, 96, 99
7, 13, 19, 48, 52, 71, 73, 86, 96, 99
13, 7, 19, 48, 52, 71, 73, 86, 96, 99
7, 13, 19, 48, 52, 71, 73, 86, 96, 99

7, 13, 19, 48, 52, 71, 73, 86, 96, 99
alex@/tmp/sort$

Repo:

  • GitHub repository: sorting_algorithms
  • File: 104-heap_sort.c, 104-O

9. Radix sort

Write a function that sorts an array of integers in ascending order using the Radix sort algorithm

  • Prototype: void radix_sort(int *array, size_t size);
  • You must implement the LSD radix sort algorithm
  • You can assume that array will contain only numbers >= 0
  • You are allowed to use malloc and free for this task
  • You’re expected to print the array each time you increase your significant digit (See example below)
alex@/tmp/sort$ cat 105-main.c
#include <stdio.h>
#include <stdlib.h>
#include "sort.h"

/**
 * main - Entry point
 *
 * Return: Always 0
 */
int main(void)
{
    int array[] = {19, 48, 99, 71, 13, 52, 96, 73, 86, 7};
    size_t n = sizeof(array) / sizeof(array[0]);

    print_array(array, n);
    printf("\n");
    radix_sort(array, n);
    printf("\n");
    print_array(array, n);
    return (0);
}
alex@/tmp/sort$ gcc -Wall -Wextra -Werror -pedantic  -std=gnu89 105-main.c 105-radix_sort.c print_array.c -o radix
alex@/tmp/sort$ ./radix
19, 48, 99, 71, 13, 52, 96, 73, 86, 7

71, 52, 13, 73, 96, 86, 7, 48, 19, 99
7, 13, 19, 48, 52, 71, 73, 86, 96, 99

7, 13, 19, 48, 52, 71, 73, 86, 96, 99
alex@/tmp/sort$

Repo:

  • GitHub repository: sorting_algorithms
  • File: 105-radix_sort.c

10. Bitonic sort

Write a function that sorts an array of integers in ascending order using the Bitonic sort algorithm

  • Prototype: void bitonic_sort(int *array, size_t size);
  • You can assume that size will be equal to 2^k, where k >= 0 (when array is not NULL …)
  • You are allowed to use printf
  • You’re expected to print the array each time you swap two elements (See example below)
  • Output: see example

Write in the file 106-O, the big O notations of the time complexity of the Bitonic sort algorithm, with 1 notation per line:

  • in the best case
  • in the average case
  • in the worst case
alex@/tmp/sort$ cat 106-main.c
#include <stdio.h>
#include <stdlib.h>
#include "sort.h"

/**
 * main - Entry point
 *
 * Return: Always 0
 */
int main(void)
{
    int array[] = {100, 93, 40, 57, 14, 58, 85, 54, 31, 56, 46, 39, 15, 26, 78, 13};
    size_t n = sizeof(array) / sizeof(array[0]);

    print_array(array, n);
    printf("\n");
    bitonic_sort(array, n);
    printf("\n");
    print_array(array, n);
    return (0);
}
alex@/tmp/sort$ gcc -Wall -Wextra -Werror -pedantic  -std=gnu89 106-main.c 106-bitonic_sort.c print_array.c -o bitonic
alex@/tmp/sort$ ./bitonic
100, 93, 40, 57, 14, 58, 85, 54, 31, 56, 46, 39, 15, 26, 78, 13

Merging [16/16] (UP):
100, 93, 40, 57, 14, 58, 85, 54, 31, 56, 46, 39, 15, 26, 78, 13
Merging [8/16] (UP):
100, 93, 40, 57, 14, 58, 85, 54
Merging [4/16] (UP):
100, 93, 40, 57
Merging [2/16] (UP):
100, 93
Result [2/16] (UP):
93, 100
Merging [2/16] (DOWN):
40, 57
Result [2/16] (DOWN):
57, 40
Result [4/16] (UP):
40, 57, 93, 100
Merging [4/16] (DOWN):
14, 58, 85, 54
Merging [2/16] (UP):
14, 58
Result [2/16] (UP):
14, 58
Merging [2/16] (DOWN):
85, 54
Result [2/16] (DOWN):
85, 54
Result [4/16] (DOWN):
85, 58, 54, 14
Result [8/16] (UP):
14, 40, 54, 57, 58, 85, 93, 100
Merging [8/16] (DOWN):
31, 56, 46, 39, 15, 26, 78, 13
Merging [4/16] (UP):
31, 56, 46, 39
Merging [2/16] (UP):
31, 56
Result [2/16] (UP):
31, 56
Merging [2/16] (DOWN):
46, 39
Result [2/16] (DOWN):
46, 39
Result [4/16] (UP):
31, 39, 46, 56
Merging [4/16] (DOWN):
15, 26, 78, 13
Merging [2/16] (UP):
15, 26
Result [2/16] (UP):
15, 26
Merging [2/16] (DOWN):
78, 13
Result [2/16] (DOWN):
78, 13
Result [4/16] (DOWN):
78, 26, 15, 13
Result [8/16] (DOWN):
78, 56, 46, 39, 31, 26, 15, 13
Result [16/16] (UP):
13, 14, 15, 26, 31, 39, 40, 46, 54, 56, 57, 58, 78, 85, 93, 100

13, 14, 15, 26, 31, 39, 40, 46, 54, 56, 57, 58, 78, 85, 93, 100
alex@/tmp/sort$

Repo:

  • GitHub repository: sorting_algorithms
  • File: 106-bitonic_sort.c, 106-O

11. Quick Sort - Hoare Partition scheme

Write a function that sorts an array of integers in ascending order using the Quick sort algorithm

  • Prototype: void quick_sort_hoare(int *array, size_t size);
  • You must implement the Hoare partition scheme.
  • The pivot should always be the last element of the partition being sorted.
  • You’re expected to print the array after each time you swap two elements (See example below)

Write in the file 107-O, the big O notations of the time complexity of the Quick sort algorithm, with 1 notation per line:

  • in the best case
  • in the average case
  • in the worst case
alex@/tmp/sort$ cat 107-main.c
#include <stdio.h>
#include <stdlib.h>
#include "sort.h"

/**
 * main - Entry point
 *
 * Return: Always 0
 */
int main(void)
{
    int array[] = {19, 48, 99, 71, 13, 52, 96, 73, 86, 7};
    size_t n = sizeof(array) / sizeof(array[0]);

    print_array(array, n);
    printf("\n");
    quick_sort_hoare(array, n);
    printf("\n");
    print_array(array, n);
    return (0);
}
alex@/tmp/sort$ gcc -Wall -Wextra -Werror -pedantic  -std=gnu89 107-main.c 107-quick_sort_hoare.c print_array.c -o quick
alex@/tmp/sort$ ./quick
19, 48, 99, 71, 13, 52, 96, 73, 86, 7

7, 48, 99, 71, 13, 52, 96, 73, 86, 19
7, 19, 99, 71, 13, 52, 96, 73, 86, 48
7, 19, 13, 71, 99, 52, 96, 73, 86, 48
7, 13, 19, 71, 99, 52, 96, 73, 86, 48
7, 13, 19, 48, 99, 52, 96, 73, 86, 71
7, 13, 19, 48, 71, 52, 96, 73, 86, 99
7, 13, 19, 48, 52, 71, 96, 73, 86, 99
7, 13, 19, 48, 52, 71, 86, 73, 96, 99
7, 13, 19, 48, 52, 71, 73, 86, 96, 99

7, 13, 19, 48, 52, 71, 73, 86, 96, 99
alex@/tmp/sort$

Another example of output:

alex@/tmp/sort$ ./quick_2
87, 65, 28, 63, 93, 52, 39, 59, 27, 30, 24, 83, 69, 62, 13, 6, 88, 58, 92, 26, 42, 11, 16, 21, 75, 36, 71, 8, 45, 38

38, 65, 28, 63, 93, 52, 39, 59, 27, 30, 24, 83, 69, 62, 13, 6, 88, 58, 92, 26, 42, 11, 16, 21, 75, 36, 71, 8, 45, 87
38, 8, 28, 63, 93, 52, 39, 59, 27, 30, 24, 83, 69, 62, 13, 6, 88, 58, 92, 26, 42, 11, 16, 21, 75, 36, 71, 65, 45, 87
38, 8, 28, 36, 93, 52, 39, 59, 27, 30, 24, 83, 69, 62, 13, 6, 88, 58, 92, 26, 42, 11, 16, 21, 75, 63, 71, 65, 45, 87
38, 8, 28, 36, 21, 52, 39, 59, 27, 30, 24, 83, 69, 62, 13, 6, 88, 58, 92, 26, 42, 11, 16, 93, 75, 63, 71, 65, 45, 87
38, 8, 28, 36, 21, 16, 39, 59, 27, 30, 24, 83, 69, 62, 13, 6, 88, 58, 92, 26, 42, 11, 52, 93, 75, 63, 71, 65, 45, 87
38, 8, 28, 36, 21, 16, 11, 59, 27, 30, 24, 83, 69, 62, 13, 6, 88, 58, 92, 26, 42, 39, 52, 93, 75, 63, 71, 65, 45, 87
38, 8, 28, 36, 21, 16, 11, 26, 27, 30, 24, 83, 69, 62, 13, 6, 88, 58, 92, 59, 42, 39, 52, 93, 75, 63, 71, 65, 45, 87
38, 8, 28, 36, 21, 16, 11, 26, 27, 30, 24, 6, 69, 62, 13, 83, 88, 58, 92, 59, 42, 39, 52, 93, 75, 63, 71, 65, 45, 87
38, 8, 28, 36, 21, 16, 11, 26, 27, 30, 24, 6, 13, 62, 69, 83, 88, 58, 92, 59, 42, 39, 52, 93, 75, 63, 71, 65, 45, 87
13, 8, 28, 36, 21, 16, 11, 26, 27, 30, 24, 6, 38, 62, 69, 83, 88, 58, 92, 59, 42, 39, 52, 93, 75, 63, 71, 65, 45, 87
13, 8, 6, 36, 21, 16, 11, 26, 27, 30, 24, 28, 38, 62, 69, 83, 88, 58, 92, 59, 42, 39, 52, 93, 75, 63, 71, 65, 45, 87
13, 8, 6, 11, 21, 16, 36, 26, 27, 30, 24, 28, 38, 62, 69, 83, 88, 58, 92, 59, 42, 39, 52, 93, 75, 63, 71, 65, 45, 87
11, 8, 6, 13, 21, 16, 36, 26, 27, 30, 24, 28, 38, 62, 69, 83, 88, 58, 92, 59, 42, 39, 52, 93, 75, 63, 71, 65, 45, 87
6, 8, 11, 13, 21, 16, 36, 26, 27, 30, 24, 28, 38, 62, 69, 83, 88, 58, 92, 59, 42, 39, 52, 93, 75, 63, 71, 65, 45, 87
6, 8, 11, 13, 21, 16, 28, 26, 27, 30, 24, 36, 38, 62, 69, 83, 88, 58, 92, 59, 42, 39, 52, 93, 75, 63, 71, 65, 45, 87
6, 8, 11, 13, 21, 16, 28, 26, 27, 24, 30, 36, 38, 62, 69, 83, 88, 58, 92, 59, 42, 39, 52, 93, 75, 63, 71, 65, 45, 87
6, 8, 11, 13, 21, 16, 24, 26, 27, 28, 30, 36, 38, 62, 69, 83, 88, 58, 92, 59, 42, 39, 52, 93, 75, 63, 71, 65, 45, 87
6, 8, 11, 13, 16, 21, 24, 26, 27, 28, 30, 36, 38, 62, 69, 83, 88, 58, 92, 59, 42, 39, 52, 93, 75, 63, 71, 65, 45, 87
6, 8, 11, 13, 16, 21, 24, 26, 27, 28, 30, 36, 38, 62, 69, 83, 87, 58, 92, 59, 42, 39, 52, 93, 75, 63, 71, 65, 45, 88
6, 8, 11, 13, 16, 21, 24, 26, 27, 28, 30, 36, 38, 62, 69, 83, 87, 58, 45, 59, 42, 39, 52, 93, 75, 63, 71, 65, 92, 88
6, 8, 11, 13, 16, 21, 24, 26, 27, 28, 30, 36, 38, 62, 69, 83, 87, 58, 45, 59, 42, 39, 52, 65, 75, 63, 71, 93, 92, 88
6, 8, 11, 13, 16, 21, 24, 26, 27, 28, 30, 36, 38, 62, 69, 71, 87, 58, 45, 59, 42, 39, 52, 65, 75, 63, 83, 93, 92, 88
6, 8, 11, 13, 16, 21, 24, 26, 27, 28, 30, 36, 38, 62, 69, 71, 63, 58, 45, 59, 42, 39, 52, 65, 75, 87, 83, 93, 92, 88
6, 8, 11, 13, 16, 21, 24, 26, 27, 28, 30, 36, 38, 62, 65, 71, 63, 58, 45, 59, 42, 39, 52, 69, 75, 87, 83, 93, 92, 88
6, 8, 11, 13, 16, 21, 24, 26, 27, 28, 30, 36, 38, 62, 65, 52, 63, 58, 45, 59, 42, 39, 71, 69, 75, 87, 83, 93, 92, 88
6, 8, 11, 13, 16, 21, 24, 26, 27, 28, 30, 36, 38, 39, 65, 52, 63, 58, 45, 59, 42, 62, 71, 69, 75, 87, 83, 93, 92, 88
6, 8, 11, 13, 16, 21, 24, 26, 27, 28, 30, 36, 38, 39, 62, 52, 63, 58, 45, 59, 42, 65, 71, 69, 75, 87, 83, 93, 92, 88
6, 8, 11, 13, 16, 21, 24, 26, 27, 28, 30, 36, 38, 39, 62, 52, 42, 58, 45, 59, 63, 65, 71, 69, 75, 87, 83, 93, 92, 88
6, 8, 11, 13, 16, 21, 24, 26, 27, 28, 30, 36, 38, 39, 59, 52, 42, 58, 45, 62, 63, 65, 71, 69, 75, 87, 83, 93, 92, 88
6, 8, 11, 13, 16, 21, 24, 26, 27, 28, 30, 36, 38, 39, 45, 52, 42, 58, 59, 62, 63, 65, 71, 69, 75, 87, 83, 93, 92, 88
6, 8, 11, 13, 16, 21, 24, 26, 27, 28, 30, 36, 38, 39, 45, 42, 52, 58, 59, 62, 63, 65, 71, 69, 75, 87, 83, 93, 92, 88
6, 8, 11, 13, 16, 21, 24, 26, 27, 28, 30, 36, 38, 39, 42, 45, 52, 58, 59, 62, 63, 65, 71, 69, 75, 87, 83, 93, 92, 88
6, 8, 11, 13, 16, 21, 24, 26, 27, 28, 30, 36, 38, 39, 42, 45, 52, 58, 59, 62, 63, 65, 69, 71, 75, 87, 83, 93, 92, 88
6, 8, 11, 13, 16, 21, 24, 26, 27, 28, 30, 36, 38, 39, 42, 45, 52, 58, 59, 62, 63, 65, 69, 71, 75, 83, 87, 93, 92, 88
6, 8, 11, 13, 16, 21, 24, 26, 27, 28, 30, 36, 38, 39, 42, 45, 52, 58, 59, 62, 63, 65, 69, 71, 75, 83, 87, 88, 92, 93

6, 8, 11, 13, 16, 21, 24, 26, 27, 28, 30, 36, 38, 39, 42, 45, 52, 58, 59, 62, 63, 65, 69, 71, 75, 83, 87, 88, 92, 93
alex@/tmp/sort$

Repo:

  • GitHub repository: sorting_algorithms
  • File: 107-quick_sort_hoare.c, 107-O

12. Dealer

YouTube

Write a function that sorts a deck of cards.

  • Prototype: void sort_deck(deck_node_t **deck);
  • You are allowed to use the C standard library function qsort
  • Please use the following data structures:
typedef enum kind_e
{
    SPADE = 0,
    HEART,
    CLUB,
    DIAMOND
} kind_t;

/**
 * struct card_s - Playing card
 *
 * @value: Value of the card
 * From "Ace" to "King"
 * @kind: Kind of the card
 */
typedef struct card_s
{
    const char *value;
    const kind_t kind;
} card_t;

/**
 * struct deck_node_s - Deck of card
 *
 * @card: Pointer to the card of the node
 * @prev: Pointer to the previous node of the list
 * @next: Pointer to the next node of the list
 */
typedef struct deck_node_s
{
    const card_t *card;
    struct deck_node_s *prev;
    struct deck_node_s *next;
} deck_node_t;
  • You have to push you deck.h header file, containing the previous data structures definition
  • Each node of the doubly linked list contains a card that you cannot modify. You have to swap the nodes.
  • You can assume there is exactly 52 elements in the doubly linked list.
  • You are free to use the sorting algorithm of your choice
  • The deck must be ordered:
    • From Ace to King
    • From Spades to Diamonds
    • See example below
alex@/tmp/sort$ cat 1000-main.c
#include <stdlib.h>
#include <stdio.h>
#include "deck.h"

void print_deck(const deck_node_t *deck)
{
    size_t i;
    char kinds[4] = {'S', 'H', 'C', 'D'};

    i = 0;
    while (deck)
    {
        if (i)
            printf(", ");
        printf("{%s, %c}", deck->card->value, kinds[deck->card->kind]);
        if (i == 12)
            printf("\n");
        i = (i + 1) % 13;
        deck = deck->next;
    }
}

deck_node_t *init_deck(const card_t cards[52])
{
    deck_node_t *deck;
    deck_node_t *node;
    size_t i;

    i = 52;
    deck = NULL;
    while (i--)
    {
        node = malloc(sizeof(*node));
        if (!node)
            return (NULL);
        node->card = &cards[i];
        node->next = deck;
        node->prev = NULL;
        if (deck)
            deck->prev = node;
        deck = node;
    }
    return (deck);
}

int main(void)
{
    card_t cards[52] = {
        {"Jack", CLUB}, {"4", HEART}, {"3", HEART}, {"3", DIAMOND}, {"Queen", HEART}, {"5", HEART}, {"5", SPADE}, {"10", HEART}, {"6", HEART}, {"5", DIAMOND}, {"6", SPADE}, {"9", HEART}, {"7", DIAMOND}, {"Jack", SPADE}, {"Ace", DIAMOND}, {"9", CLUB}, {"Jack", DIAMOND}, {"7", SPADE}, {"King", DIAMOND}, {"10", CLUB}, {"King", SPADE}, {"8", CLUB}, {"9", SPADE}, {"6", CLUB}, {"Ace", CLUB}, {"3", SPADE}, {"8", SPADE}, {"9", DIAMOND}, {"2", HEART}, {"4", DIAMOND}, {"6", DIAMOND}, {"3", CLUB}, {"Queen", CLUB}, {"10", SPADE}, {"8", DIAMOND}, {"8", HEART}, {"Ace", SPADE}, {"Jack", HEART}, {"2", CLUB}, {"4", SPADE}, {"2", SPADE}, {"2", DIAMOND}, {"King", CLUB}, {"Queen", SPADE}, {"Queen", DIAMOND}, {"7", CLUB}, {"7", HEART}, {"5", CLUB}, {"10", DIAMOND}, {"4", CLUB}, {"King", HEART}, {"Ace", HEART},
    };
    deck_node_t *deck;

    deck = init_deck(cards);
    print_deck(deck);
    printf("\n");
    sort_deck(&deck);
    printf("\n");
    print_deck(deck);
    return (0);
}
alex@/tmp/sort$ gcc -Wall -Wextra -Werror -pedantic  -std=gnu89 1000-main.c 1000-sort_deck.c -o deck
alex@/tmp/sort$ ./deck
{Jack, C}, {4, H}, {3, H}, {3, D}, {Queen, H}, {5, H}, {5, S}, {10, H}, {6, H}, {5, D}, {6, S}, {9, H}, {7, D}
{Jack, S}, {Ace, D}, {9, C}, {Jack, D}, {7, S}, {King, D}, {10, C}, {King, S}, {8, C}, {9, S}, {6, C}, {Ace, C}, {3, S}
{8, S}, {9, D}, {2, H}, {4, D}, {6, D}, {3, C}, {Queen, C}, {10, S}, {8, D}, {8, H}, {Ace, S}, {Jack, H}, {2, C}
{4, S}, {2, S}, {2, D}, {King, C}, {Queen, S}, {Queen, D}, {7, C}, {7, H}, {5, C}, {10, D}, {4, C}, {King, H}, {Ace, H}


{Ace, S}, {2, S}, {3, S}, {4, S}, {5, S}, {6, S}, {7, S}, {8, S}, {9, S}, {10, S}, {Jack, S}, {Queen, S}, {King, S}
{Ace, H}, {2, H}, {3, H}, {4, H}, {5, H}, {6, H}, {7, H}, {8, H}, {9, H}, {10, H}, {Jack, H}, {Queen, H}, {King, H}
{Ace, C}, {2, C}, {3, C}, {4, C}, {5, C}, {6, C}, {7, C}, {8, C}, {9, C}, {10, C}, {Jack, C}, {Queen, C}, {King, C}
{Ace, D}, {2, D}, {3, D}, {4, D}, {5, D}, {6, D}, {7, D}, {8, D}, {9, D}, {10, D}, {Jack, D}, {Queen, D}, {King, D}
alex@/tmp/sort$

Repo:

  • GitHub repository: sorting_algorithms
  • File: 1000-sort_deck.c, deck.h