Skip to content

Commit

Permalink
style: remove redundant code (#25)
Browse files Browse the repository at this point in the history
  • Loading branch information
StepNeverStop committed Jan 6, 2021
1 parent 3bf7bc0 commit fb9e5eb
Showing 1 changed file with 2 additions and 27 deletions.
29 changes: 2 additions & 27 deletions rls/envs/unity_wrapper/wrappers.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,8 +34,7 @@ def __init__(self, kwargs):
env_kwargs = dict(seed=int(kwargs['env_seed']),
worker_id=int(kwargs['worker_id']),
timeout_wait=int(kwargs['timeout_wait']),
side_channels=list(self._side_channels.values()) # 注册所有初始化后的通讯频道
)
side_channels=list(self._side_channels.values())) # 注册所有初始化后的通讯频道
if kwargs['file_name'] is not None:
unity_env_dict = load_yaml('/'.join([os.getcwd(), 'rls', 'envs', 'unity_env_dict.yaml']))
env_kwargs.update(file_name=kwargs['file_name'],
Expand Down Expand Up @@ -120,7 +119,6 @@ def initialize_environment(self):
self.a_dim = defaultdict(int)
self.discrete_action_lists = {}
self.is_continuous = {}
self.discrete_branchess = {}
self.empty_actiontuples = {}

self.vector_info_type = {}
Expand All @@ -133,7 +131,7 @@ def initialize_environment(self):
self.vector_dims[bn].append(shape[0])
elif len(shape) == 3:
self.visual_idxs[bn].append(i)
self.visual_dims[bn].append(list(shape)) # TODO: 适配多个不同size的图像输入,目前只支持1种类型的图像输入
self.visual_dims[bn].append(list(shape))
else:
raise ValueError("shape of observation cannot be understood.")
self.vector_info_type[bn] = NamedTupleStaticClass.generate_obs_namedtuple(n_agents=self.behavior_agents[bn],
Expand Down Expand Up @@ -265,29 +263,6 @@ def coordinate_information(self, bn):
info=info
)

def deal_vector(self, n, vecs):
'''
把向量观测信息 按每个智能体 拼接起来
'''
if len(vecs):
return np.hstack(vecs)
else:
return np.array([]).reshape(n, -1)

def deal_visual(self, n, viss):
'''
viss : [camera1, camera2, camera3, ...]
把图像观测信息 按每个智能体 组合起来
'''
ss = []
for j in range(n):
# 第j个智能体
s = []
for v in viss:
s.append(v[j])
ss.append(np.array(s)) # [agent1(camera1, camera2, camera3, ...), ...]
return np.array(ss) # [B, N, (H, W, C)]

def random_action(self):
'''
choose random action for each group and each agent.
Expand Down

0 comments on commit fb9e5eb

Please sign in to comment.