Releases: Spijkervet/SimCLR
Releases · Spijkervet/SimCLR
SimCLR weights (ResNet50, 256 batch size, 100 epochs)
config.yaml
{
"batch_size": 256,
"dataset": "STL10",
"epochs": 100,
"fp16": false,
"fp16_opt_level": "O2",
"logistic_batch_size": 256,
"logistic_epochs": 100,
"model_num": 40,
"model_path": "logs/0",
"normalize": true,
"optimizer": "Adam",
"projection_dim": 64,
"resnet": "resnet50",
"seed": 42,
"start_epoch": 0,
"temperature": 0.5,
"workers": 16
}
SimCLR weights (ResNet18, 256 batch size, 100 epochs)
config.yaml:
# train options
seed: 42 # sacred handles automatic seeding when passed in the config
batch_size: 256
workers: 16
start_epoch: 0
epochs: 100
dataset: "STL10" # STL10
# model options
resnet: "resnet18"
normalize: True
projection_dim: 64 # "[...] to project the representation to a 128-dimensional latent space"
# loss options
optimizer: "Adam" # or LARS (experimental)
temperature: 0.5 # see appendix B.7.: Optimal temperature under different batch sizes
# reload options
model_path: "logs/0" # set to the directory containing `checkpoint_##.tar`
model_num: 40 # set to checkpoint number
# mixed-precision training
fp16: False
fp16_opt_level: "O2"
# logistic regression options
logistic_batch_size: 256
logistic_epochs: 100
SimCLR weights (40 epochs)
A pre-trained SimCLR model with the following parameters:
"batch_size": 256,
"epochs": 40,
"n_out": 64,
"normalize": true,
"resnet": "resnet18",
"seed": 634715003,
"start_epoch": 0,
"temperature": 0.5,
"workers": 16
Accuracy with a logistic regression classifier trained on top of SimCLR on STL-10 test set: 0.72