- Accepted to UAI 2022
- https://openreview.net/forum?id=HFbf9PIjqgq
- This repository is the official implementation by the authors.
- Watch our poster or the 1 minute video presentation of this paper for more details.
- Python 3.7.4
- pip-20.1.1
- Additional packages can be located in
requirements.txt
andbenchmark.requirements.txt
(Only for theexperiments_self_contrastive.py
andexperiments_classification.py
.
- comparing_onehot.ipynb, observing_imine_different_target.ipynb
- Run with
python3 experiments.py --batch_size 64 --loss {LOSS} --problem gaussian
- We modified code from https://colab.research.google.com/github/google-research/google-research/blob/master/vbmi/vbmi_demo.ipynb
- CIFAR-100: Run with
python3 experiments_self_contrastive.py --dataset cifar100 --loss {LOSS} --batch_size 100 --model resnet18 --epochs 150 --remove_fc --seed {SEED} --device 0
- CIFAR-10: Run with
python3 experiments_self_contrastive.py --dataset cifar10 --loss {LOSS} --batch_size 10 --model resnet18 --epochs 100 --remove_fc --seed {SEED} --device 0
- CIFAR-100: Run with
python3 experiments_classification.py --dataset cifar100 --loss {LOSS} --batch_size 100 --model resnet18 --epochs 100 --seed {SEED} --device 0
- CIFAR-10: Run with
python3 experiments_classification.py --dataset cifar10 --loss {LOSS} --batch_size 10 --model resnet18 --epochs 40 --seed {SEED} --device 0