Deep Lane Segmentation using SHG Module, Unet
Folder | Description |
---|---|
models | network architectures and parameters |
datasets | define dataloader interfaces |
criterions | define criterion interfaces |
util | visulization utilities |
D_Lane_Segmentation
├── src
│ ├── models
│ ├── input_video
│ ├── datasets
│ ├── output_video
│ └── util
│
└── result
├── Unet_weight
└── SHG_weight
- python3(recommend) or python2
- pytorch==1.4.0
- torchvision
- opencv==3.3.1
- scipy, numpy, progress, protobuf
- joblib (for parallel processing data.)
- tqdm
- Weight File Download SHG_weight, Unet_weight
mkdir result && cd result && tar -zxvf SHG_weight.tar.gz && tar -zxvf Unet_weight.tar.gz
python3 inference.py --netType stackedHGB --resume ../result/SHG_weight --nStack 7
python3 inference_unet.py --netType Unet --resume ../result/Unet_weight
KMU Self-Driving-Studio - SHG