Skip to content

ShineySun/D_Lane_Segmentation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

37 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Deep_Lane_Segmentation

KMU HCI Lab

Deep Lane Segmentation using SHG Module, Unet


Folders

Folder Description
models network architectures and parameters
datasets define dataloader interfaces
criterions define criterion interfaces
util visulization utilities

Directory

D_Lane_Segmentation
├── src
│    ├── models
│    ├── input_video
│    ├── datasets   
│    ├── output_video
│    └── util
│
└── result
     ├── Unet_weight
     └── SHG_weight

Requirements

  • python3(recommend) or python2
  • pytorch==1.4.0
  • torchvision
  • opencv==3.3.1
  • scipy, numpy, progress, protobuf
  • joblib (for parallel processing data.)
  • tqdm

Inference

Download Weight File

mkdir result && cd result && tar -zxvf SHG_weight.tar.gz && tar -zxvf Unet_weight.tar.gz

Stacked Hourglass Network

python3 inference.py --netType stackedHGB --resume ../result/SHG_weight --nStack 7

Unet

python3 inference_unet.py --netType Unet --resume ../result/Unet_weight

Inference Video

KMU Self-Driving-Studio - SHG

av_gif

About

Deep Lane Segmentation using SHG Module

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages