Skip to content
Merged
Show file tree
Hide file tree
Changes from 14 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions docs/src/techpapers/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -11,3 +11,4 @@ Extra information on specific technical issues.

um_files_loading.rst
missing_data_handling.rst
netcdf_io.rst
141 changes: 141 additions & 0 deletions docs/src/techpapers/netcdf_io.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,141 @@
.. _netcdf_io:

.. testsetup:: chunk_control

import iris
from iris.fileformats.netcdf.loader import CHUNK_CONTROL

from pathlib import Path
import dask
import shutil
import tempfile

tmp_dir = Path(tempfile.mkdtemp())
tmp_filepath = tmp_dir / "tmp.nc"

cube = iris.load(iris.sample_data_path("E1_north_america.nc"))[0]
iris.save(cube, tmp_filepath, chunksizes=(120, 37, 49))
old_dask = dask.config.get("array.chunk-size")
dask.config.set({'array.chunk-size': '500KiB'})


.. testcleanup:: chunk_control

dask.config.set({'array.chunk-size': old_dask})
shutil.rmtree(tmp_dir)


=============================
NetCDF I/O Handling in Iris
=============================

This document provides a basic account of how Iris loads and saves NetCDF files.

.. admonition:: Under Construction

This document is still a work in progress, so might include blank or unfinished sections,
watch this space!


Chunk Control
--------------

Default Chunking
^^^^^^^^^^^^^^^^

Chunks are, by default, optimised by Iris on load. This will automatically
decide the best chunksize for your data without any user input. This is
calculated based on a number of factors, including:

- File Variable Chunking
- Full Variable Shape
- Dask Default Chunksize
- Dimension Order: Earlier (outer) dimensions will be prioritised to be split over later (inner) dimensions.

.. doctest:: chunk_control

>>> cube = iris.load_cube(tmp_filepath)
>>>
>>> print(cube.shape)
(240, 37, 49)
>>> print(cube.core_data().chunksize)
(60, 37, 49)

For more user control, functionality was updated in :pull:`5588`, with the
creation of the :data:`iris.fileformats.netcdf.loader.CHUNK_CONTROL` class.

Custom Chunking: Set
^^^^^^^^^^^^^^^^^^^^

There are three context manangers within :data:`iris.fileformats.netcdf.loader.CHUNK_CONTROL`. The most basic is
:meth:`iris.fileformats.netcdf.loader.CHUNK_CONTROL.set`. This allows you to specify the chunksize for each dimension,
and to specify a `var_name` specifically to change.

Using ``-1`` in place of a chunksize will ensure the chunksize stays the same
as the shape, i.e. no optimisation occurs on that dimension.

.. doctest:: chunk_control

>>> with CHUNK_CONTROL.set("air_temperature", time=180, latitude=-1, longitude=25):
... cube = iris.load_cube(tmp_filepath)
>>>
>>> print(cube.core_data().chunksize)
(180, 37, 25)

Note that ``var_name`` is optional, and that you don't need to specify every dimension. If you
specify only one dimension, the rest will be optimised using Iris' default behaviour.

.. doctest:: chunk_control

>>> with CHUNK_CONTROL.set(longitude=25):
... cube = iris.load_cube(tmp_filepath)
>>>
>>> print(cube.core_data().chunksize)
(120, 37, 25)

Custom Chunking: From File
^^^^^^^^^^^^^^^^^^^^^^^^^^

The second context manager is :meth:`iris.fileformats.netcdf.loader.CHUNK_CONTROL.from_file`.
This takes chunksizes as defined in the NetCDF file. Any dimensions without specified chunks
will default to Iris optimisation.

.. doctest:: chunk_control

>>> with CHUNK_CONTROL.from_file():
... cube = iris.load_cube(tmp_filepath)
>>>
>>> print(cube.core_data().chunksize)
(120, 37, 49)

Custom Chunking: As Dask
^^^^^^^^^^^^^^^^^^^^^^^^

The final context manager, :meth:`iris.fileformats.netcdf.loader.CHUNK_CONTROL.as_dask`, bypasses
Iris' optimisation all together, and will take its chunksizes from Dask's behaviour.

.. doctest:: chunk_control

>>> with CHUNK_CONTROL.as_dask():
... cube = iris.load_cube(tmp_filepath)
>>>
>>> print(cube.core_data().chunksize)
(70, 37, 49)


Split Attributes
-----------------

TBC


Deferred Saving
----------------

TBC


Guess Axis
-----------

TBC
22 changes: 11 additions & 11 deletions lib/iris/fileformats/netcdf/loader.py
Original file line number Diff line number Diff line change
Expand Up @@ -711,26 +711,26 @@ def set(

Parameters
----------
var_names : str or list of str
var_names : str or list of str, default=None
apply the ``dimension_chunksizes`` controls only to these variables,
or when building cubes from these data variables.
If None (the default), settings apply to all loaded variables.
dimension_chunksizes : dict: str --> int
If None, settings apply to all loaded variables.
dimension_chunksizes : dict of {str: int}
Kwargs specifying chunksizes for dimensions of file variables.
Each key-value pair defines a chunksize for a named file
dimension, e.g. {'time': 10, 'model_levels':1}.
dimension, e.g. ``{'time': 10, 'model_levels':1}``.
Values of ``-1`` will lock the chunk to the size of its shape.

Notes
-----
This function acts as a contextmanager, for use in a 'with' block.

Example:

#todo
# >>> from iris.fileformats.netcdf.loader import CHUNK_CONTROL
# >>> from iris import sample_data_path
# >>> with CHUNK_CONTROL.set('var1', model_level=1, time=50):
# ... cubes = iris.load(sample_data_path("toa_brightness_stereographic.nc"))
>>> import iris
>>> from iris.fileformats.netcdf.loader import CHUNK_CONTROL
>>> with CHUNK_CONTROL.set("air_temperature", time=180, latitude=-1):
... cube = iris.load(iris.sample_data_path("E1_north_america.nc"))[0]
>>>
>>> print(cube.core_data().chunksize)

When ``var_names`` is present, the chunksize adjustments are applied
only to the selected variables. However, for a CF data variable, this
Expand Down