forked from svc-develop-team/so-vits-svc
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
9 changed files
with
819 additions
and
28 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,105 @@ | ||
import numpy as np | ||
import torch | ||
import torch.nn.functional as F | ||
from vdecoder.nsf_hifigan.nvSTFT import STFT | ||
from vdecoder.nsf_hifigan.models import load_model | ||
from torchaudio.transforms import Resample | ||
|
||
class Enhancer: | ||
def __init__(self, enhancer_type, enhancer_ckpt, device=None): | ||
if device is None: | ||
device = 'cuda' if torch.cuda.is_available() else 'cpu' | ||
self.device = device | ||
|
||
if enhancer_type == 'nsf-hifigan': | ||
self.enhancer = NsfHifiGAN(enhancer_ckpt, device=self.device) | ||
else: | ||
raise ValueError(f" [x] Unknown enhancer: {enhancer_type}") | ||
|
||
self.resample_kernel = {} | ||
self.enhancer_sample_rate = self.enhancer.sample_rate() | ||
self.enhancer_hop_size = self.enhancer.hop_size() | ||
|
||
def enhance(self, | ||
audio, # 1, T | ||
sample_rate, | ||
f0, # 1, n_frames, 1 | ||
hop_size, | ||
adaptive_key = 0, | ||
silence_front = 0 | ||
): | ||
# enhancer start time | ||
start_frame = int(silence_front * sample_rate / hop_size) | ||
real_silence_front = start_frame * hop_size / sample_rate | ||
audio = audio[:, int(np.round(real_silence_front * sample_rate)) : ] | ||
f0 = f0[: , start_frame :, :] | ||
|
||
# adaptive parameters | ||
adaptive_factor = 2 ** ( -adaptive_key / 12) | ||
adaptive_sample_rate = 100 * int(np.round(self.enhancer_sample_rate / adaptive_factor / 100)) | ||
real_factor = self.enhancer_sample_rate / adaptive_sample_rate | ||
|
||
# resample the ddsp output | ||
if sample_rate == adaptive_sample_rate: | ||
audio_res = audio | ||
else: | ||
key_str = str(sample_rate) + str(adaptive_sample_rate) | ||
if key_str not in self.resample_kernel: | ||
self.resample_kernel[key_str] = Resample(sample_rate, adaptive_sample_rate, lowpass_filter_width = 128).to(self.device) | ||
audio_res = self.resample_kernel[key_str](audio) | ||
|
||
n_frames = int(audio_res.size(-1) // self.enhancer_hop_size + 1) | ||
|
||
# resample f0 | ||
f0_np = f0.squeeze(0).squeeze(-1).cpu().numpy() | ||
f0_np *= real_factor | ||
time_org = (hop_size / sample_rate) * np.arange(len(f0_np)) / real_factor | ||
time_frame = (self.enhancer_hop_size / self.enhancer_sample_rate) * np.arange(n_frames) | ||
f0_res = np.interp(time_frame, time_org, f0_np, left=f0_np[0], right=f0_np[-1]) | ||
f0_res = torch.from_numpy(f0_res).unsqueeze(0).float().to(self.device) # 1, n_frames | ||
|
||
# enhance | ||
enhanced_audio, enhancer_sample_rate = self.enhancer(audio_res, f0_res) | ||
|
||
# resample the enhanced output | ||
if adaptive_factor != 0: | ||
key_str = str(adaptive_sample_rate) + str(enhancer_sample_rate) | ||
if key_str not in self.resample_kernel: | ||
self.resample_kernel[key_str] = Resample(adaptive_sample_rate, enhancer_sample_rate, lowpass_filter_width = 128).to(self.device) | ||
enhanced_audio = self.resample_kernel[key_str](enhanced_audio) | ||
|
||
# pad the silence frames | ||
if start_frame > 0: | ||
enhanced_audio = F.pad(enhanced_audio, (int(np.round(enhancer_sample_rate * real_silence_front)), 0)) | ||
|
||
return enhanced_audio, enhancer_sample_rate | ||
|
||
|
||
class NsfHifiGAN(torch.nn.Module): | ||
def __init__(self, model_path, device=None): | ||
super().__init__() | ||
if device is None: | ||
device = 'cuda' if torch.cuda.is_available() else 'cpu' | ||
self.device = device | ||
print('| Load HifiGAN: ', model_path) | ||
self.model, self.h = load_model(model_path, device=self.device) | ||
|
||
def sample_rate(self): | ||
return self.h.sampling_rate | ||
|
||
def hop_size(self): | ||
return self.h.hop_size | ||
|
||
def forward(self, audio, f0): | ||
stft = STFT( | ||
self.h.sampling_rate, | ||
self.h.num_mels, | ||
self.h.n_fft, | ||
self.h.win_size, | ||
self.h.hop_size, | ||
self.h.fmin, | ||
self.h.fmax) | ||
with torch.no_grad(): | ||
mel = stft.get_mel(audio) | ||
enhanced_audio = self.model(mel, f0[:,:mel.size(-1)]).view(-1) | ||
return enhanced_audio, self.h.sampling_rate |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,15 @@ | ||
import os | ||
import shutil | ||
|
||
|
||
class AttrDict(dict): | ||
def __init__(self, *args, **kwargs): | ||
super(AttrDict, self).__init__(*args, **kwargs) | ||
self.__dict__ = self | ||
|
||
|
||
def build_env(config, config_name, path): | ||
t_path = os.path.join(path, config_name) | ||
if config != t_path: | ||
os.makedirs(path, exist_ok=True) | ||
shutil.copyfile(config, os.path.join(path, config_name)) |
Oops, something went wrong.