This repo is officical PyTorch implement of Feature Alignment and Uniformity for Test Time Adaptation (CVPR 2023) by Shuai Wang, Daoan Zhang, Zipei Yan, Jianguo Zhang and Rui Li.
This paper could be found at arXiv, open access and IEEEXplore.
This codebase is mainly based on T3A and DeepDG.
We use python==3.8.13
, other packages including:
torch==1.12.0
torchvision==0.13.0
numpy==1.22.3
tqdm==4.65.0
timm==0.6.12
scikit-learn==1.2.2
pillow==9.0.1
If you want to use efficientnet
, please confirm torchvision>=0.11.0
.
Download datasets used in our paper from:
PACS
OfficeHome
VLCS
DomainNet
Download them from the above links, and organize them as follows.
|-your_data_dir
|-PACS
|-art_painting
|-cartoon
|-photo
|-sketch
|-OfficeHome
|-Art
|-Clipart
|-Product
|-RealWorld
|-VLCS
|-Caltech101
|-LabelMe
|-SUN09
|-VOC2007
|-DomainNet
|-clipart
|-infograph
|-painting
|-quickdraw
|-real
|-sketch
Please use train.py
to train the source model. For example:
cd code/
python train.py --dataset PACS \
--data_dir your_data_dir \
--opt_type Adam \
--lr 5e-5 \
--max_epoch 50
Change --dataset PACS
for other datasets, such as office-home
, VLCS
, DomainNet
.
Set --net
to use different backbones, such as resnext50
, ViT-B16
.
python unsupervise_adapt.py --dataset PACS \
--data_dir your_data_dir \
--adapt_alg TSD \
--pretrain_dir your_pretrain_model_dir \
--lr 1e-4
Change --adapt_alg TSD
to use different methods of test time adaptation, e.g. T3A
, SHOT-IM
, Tent
.
--pretrain_dir
denotes the path of source model, e.g. ./train_outputs/model.pkl
.
Empirically, set --lr
to 1e-4 or 1e-5 achieves good performance.
You can also search it using training domain validation set.
If this repo is useful for your research, please consider citing our paper:
@inproceedings{wang2023feature,
title={Feature alignment and uniformity for test time adaptation},
author={Wang, Shuai and Zhang, Daoan and Yan, Zipei and Zhang, Jianguo and Li, Rui},
booktitle={CVPR},
year={2023}
}
Please contact [email protected]