Skip to content

This repository consolidates my teaching material for "Causal Machine Learning".

Notifications You must be signed in to change notification settings

SANGDONKIM/causalML-teaching

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 
 
 

Repository files navigation

Teaching material for Causal ML

This repository consolidates the teaching material of several "Causal Machine Learning" courses I taught on the master and PhD level with a focus on impact/policy/program evaluation.

Comments

Like the whole literature the content is a moving target. Please let me know if you spot any errors, disagreements, but also if you found the material useful. To this end, open an issue or write me a mail

The slides include links to a variety of compiled html R notebooks. Their Rmd files are provided in this repository if you are iterested in running and extending them yourself. A full list of available notebooks is provided on my homepage.

Slides

  1. Welcome
  2. Stats/’metrics recap
  3. Supervised ML: predicting outcomes
  4. Causal Inference basis
  5. Estimating constant effects: Double Selection to Double ML
  6. Average treatment effect estimation: AIPW-Double ML
  7. Double ML - the general recipe
  8. Predicting effects
  9. Heterogeneous effects with inference
  10. Policy learning

About

This repository consolidates my teaching material for "Causal Machine Learning".

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published