Estimate vital signs such as heart rate and respiratory rate from video.
vitallens
is a Python client for the VitalLens API, using the same inference engine as our free iOS app VitalLens.
Furthermore, it includes fast implementations of several other heart rate estimation methods from video such as G
, CHROM
, and POS
.
- Accepts as input either a video filepath or an in-memory video as
np.ndarray
- Performs fast face detection if required - you can also pass existing detections
vitallens.Method.VITALLENS
supports heart rate, respiratory rate, pulse waveform, and respiratory waveform estimation. In addition, it returns an estimation confidence for each vital. We are working to support more vital signs in the future.vitallens.Method.{G/CHROM/POS}
support faster, but less accurate heart rate and pulse waveform estimation.- While
VITALLENS
requires an API Key,G
,CHROM
, andPOS
do not. Register on our website to get a free API Key.
Estimate vitals in a few lines of code:
from vitallens import VitalLens, Method
vl = VitalLens(method=Method.VITALLENS, api_key="YOUR_API_KEY")
result = vl("video.mp4")
print(result)
vitallens
provides vital sign estimates for general wellness purposes only. It is not intended for medical use. Always consult with your doctor for any health concerns or for medically precise measurement.
See also our Terms of Service for the VitalLens API and our Privacy Policy.
General prerequisites are python>=3.8
and ffmpeg
installed and accessible via the $PATH
environment variable.
The easiest way to install the latest version of vitallens
and its Python dependencies:
pip install vitallens
Alternatively, it can be done by cloning the source:
git clone https://github.com/Rouast-Labs/vitallens-python.git
pip install ./vitallens-python
To start using vitallens
, first create an instance of vitallens.VitalLens
.
It can be configured using the following parameters:
Parameter | Description | Default |
---|---|---|
method | Inference method. {Method.VITALLENS , Method.POS , Method.CHROM or Method.G } |
Method.VITALLENS |
mode | Operation mode. {Mode.BATCH for indep. videos or Mode.BURST for video stream} |
Mode.BATCH |
api_key | Usage key for the VitalLens API (required for Method.VITALLENS ) |
None |
detect_faces | True if faces need to be detected, otherwise False . |
True |
estimate_running_vitals | Set True to compute running vitals (e.g., running_heart_rate ). |
True |
fdet_max_faces | The maximum number of faces to detect (if necessary). | 1 |
fdet_fs | Frequency [Hz] at which faces should be scanned - otherwise linearly interpolated. | 1.0 |
export_to_json | If True , write results to a json file. |
True |
export_dir | The directory to which json files are written. | . |
Once instantiated, vitallens.VitalLens
can be called to estimate vitals.
In Mode.BATCH
calls are assumed to be working on independent videos, whereas in Mode.BURST
we expect the subsequent calls to pass the next frames of the same video (stream) as np.ndarray
.
Calls are configured using the following parameters:
Parameter | Description | Default |
---|---|---|
video | The video to analyze. Either a path to a video file or np.ndarray . More info here. |
|
faces | Face detections. Ignored unless detect_faces=False . More info here. |
None |
fps | Sampling frequency of the input video. Required if video is np.ndarray . |
None |
override_fps_target | Target frequency for inference (optional - use methods's default otherwise). | None |
export_filename | Filename for json export if applicable. | None |
vitallens
returns estimates of the following vital signs if using Mode.BATCH
with a minimum of 16 frames:
Name | Type | Returned if |
---|---|---|
heart_rate |
Global value | Video at least 2 seconds long and using Method.VITALLENS , Method.POS , Method.CHROM or Method.G |
running_heart_rate |
Continuous values | Video more than 10 seconds long and using Method.VITALLENS , Method.POS , Method.CHROM or Method.G and estimate_running_vitals=True |
ppg_waveform |
Continuous waveform | Using Method.VITALLENS , Method.POS , Method.CHROM or Method.G |
respiratory_rate |
Global value | Video at least 4 seconds long and using Method.VITALLENS |
running_respiratory_rate |
Continuous values | Video more than 30 seconds long and using Method.VITALLENS and estimate_running_vitals=True |
respiratory_waveform |
Continuous waveform | Using Method.VITALLENS |
The estimation results are returned as a list
. It contains a dict
for each distinct face, with the following structure:
[
{
'face': {
'coordinates': <Face coordinates for each frame as np.ndarray of shape (n_frames, 4)>,
'confidence': <Face live confidence for each frame as np.ndarray of shape (n_frames,)>,
'note': <Explanatory note>
},
'vital_signs': {
'heart_rate': {
'value': <Estimated global value as float scalar>,
'unit': <Value unit>,
'confidence': <Estimation confidence as float scalar>,
'note': <Explanatory note>
},
'respiratory_rate': {
'value': <Estimated global value as float scalar>,
'unit': <Value unit>,
'confidence': <Estimation confidence as float scalar>,
'note': <Explanatory note>
},
'ppg_waveform': {
'data': <Estimated waveform value for each frame as np.ndarray of shape (n_frames,)>,
'unit': <Data unit>,
'confidence': <Estimation confidence for each frame as np.ndarray of shape (n_frames,)>,
'note': <Explanatory note>
},
'respiratory_waveform': {
'data': <Estimated waveform value for each frame as np.ndarray of shape (n_frames,)>,
'unit': <Data unit>,
'confidence': <Estimation confidence for each frame as np.ndarray of shape (n_frames,)>,
'note': <Explanatory note>
},
'running_heart_rate': {
'data': <Estimated value for each frame as np.ndarray of shape (n_frames,)>,
'unit': <Value unit>,
'confidence': <Estimation confidence for each frame as np.ndarray of shape (n_frames,)>,
'note': <Explanatory note>
},
'running_respiratory_rate': {
'data': <Estimated value for each frame as np.ndarray of shape (n_frames,)>,
'unit': <Value unit>,
'confidence': <Estimation confidence for each frame as np.ndarray of shape (n_frames,)>,
'note': <Explanatory note>
}
},
"message": <Message about estimates>
},
{
<same structure for face 2 if present>
},
...
]
Test vitallens
in real-time with your webcam using the script examples/live.py
.
This uses Mode.BURST
to update results continuously (approx. every 2 seconds for Method.VITALLENS
).
Some options are available:
method
: Choose from [VITALLENS
,POS
,G
,CHROM
] (Default:VITALLENS
)api_key
: Pass your API Key. Required if usingmethod=VITALLENS
.
May need to install requirements first: pip install opencv-python
python examples/live.py --method=VITALLENS --api_key=YOUR_API_KEY
There is an example Python script in examples/test.py
which uses Mode.BATCH
to run vitals estimation and plot the predictions against ground truth labels recorded with gold-standard medical equipment.
Some options are available:
method
: Choose from [VITALLENS
,POS
,G
,CHROM
] (Default:VITALLENS
)video_path
: Path to video (Default:examples/sample_video_1.mp4
)vitals_path
: Path to gold-standard vitals (Default:examples/sample_vitals_1.csv
)api_key
: Pass your API Key. Required if usingmethod=VITALLENS
.
May need to install requirements first: pip install matplotlib pandas
For example, to reproduce the results from the banner image on the VitalLens API Webpage:
python examples/test.py --method=VITALLENS --video_path=examples/sample_video_2.mp4 --vitals_path=examples/sample_vitals_2.csv --api_key=YOUR_API_KEY
This sample is kindly provided by the VitalVideos dataset.
from vitallens import VitalLens, Method
vl = VitalLens(method=Method.VITALLENS, api_key="YOUR_API_KEY")
result = vl("video.mp4")
from vitallens import VitalLens, Method
my_video_arr = ...
my_video_fps = 30
vl = VitalLens(method=Method.POS)
result = vl(my_video_arr, fps=my_video_fps)
If you encounter issues installing vitallens
dependencies directly, you can use our Docker image, which contains all necessary tools and libraries.
This docker image is set up to execute the example Python script in examples/test.py
for you.
- Docker installed on your system.
- Clone the repository
git clone https://github.com/Rouast-Labs/vitallens-python.git && cd vitallens-python
- Build the Docker image
docker build -t vitallens .
- Run the Docker container
To run the example script on the sample video:
docker run vitallens \
--api_key "your_api_key_here" \
--vitals_path "examples/sample_vitals_2.csv" \
--video_path "examples/sample_video_2.mp4" \
--method "VITALLENS"
You can also run it on your own video:
docker run vitallens \
--api_key "your_api_key_here" \
--video_path "path/to/your/video.mp4" \
--method "VITALLENS"
- View the results
The results will print to the console in text form.
Please note that the example script plots won't work when running them through Docker. To to get the plot as an image file, run:
docker cp <container_id>:/app/results.png .
Before running tests, please make sure that you have an environment variable VITALLENS_DEV_API_KEY
set to a valid API Key.
To lint and run tests:
flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics
pytest
To build:
python -m build