Figure 1. Accelerating Diffusion Transformer inference across multiple modalities with 50 DDIM Steps on DiT-XL-256x256, 100 DPM-Solver++(3M) SDE steps for a 10s audio sample (spectrogram shown) on Stable Audio Open, 30 Rectified Flow steps on Open-Sora 480p 2s videos
We introduce SmoothCache, a straightforward acceleration technique for DiT architecture models, that's both training-free, flexible and performant. By leveraging layer-wise representation error, our method identifies redundancies in the diffusion process, generates a static caching scheme to reuse output featuremaps and therefore reduces the need for computationally expensive operations. This solution works across different models and modalities, can be easily dropped into existing Diffusion Transformer pipelines, can be stacked on different solvers, and requires no additional training or datasets. SmoothCache consistently outperforms various solvers designed to accelerate the diffusion process, while matching or surpassing the performance of existing modality-specific caching techniques.
pip install SmoothCache
Inspired by DeepCache, we have implemented drop-in SmoothCache helper classes that easily applies to Huggingface Diffuser DiTPipeline, and original DiT implementations.
Generally, only 3 additional lines needs to be added to the original sampler scripts:
from SmoothCache import <DESIREDCacheHelper>
cache_helper = DiffuserCacheHelper(<MODEL_HANDLER>, schedule=schedule)
cache_helper.enable()
# Original sampler code.
cache_helper.eisable()
import json
import torch
from diffusers import DiTPipeline, DPMSolverMultistepScheduler
# Import SmoothCacheHelper
from SmoothCache import DiffuserCacheHelper
# Load the DiT pipeline and scheduler
pipe = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256", torch_dtype=torch.float16)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")
# Initialize the DiffuserCacheHelper with the model
with open("smoothcache_schedules/50-N-3-threshold-0.35.json", "r") as f:
schedule = json.load(f)
cache_helper = DiffuserCacheHelper(pipe.transformer, schedule=schedule)
# Enable the caching helper
cache_helper.enable()
# Prepare the input
words = ["Labrador retriever"]
class_ids = pipe.get_label_ids(words)
# Generate images with the pipeline
generator = torch.manual_seed(33)
image = pipe(class_labels=class_ids, num_inference_steps=50, generator=generator).images[0]
# Restore the original forward method and disable the helper
# disable() should be paired up with enable()
cache_helper.disable()
import torch
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
from torchvision.utils import save_image
from diffusion import create_diffusion
from diffusers.models import AutoencoderKL
from download import find_model
from models import DiT_models
import argparse
from SmoothCache import DiTCacheHelper # Import DiTCacheHelper
import json
# Setup PyTorch:
torch.manual_seed(args.seed)
torch.set_grad_enabled(False)
device = "cuda" if torch.cuda.is_available() else "cpu"
if args.ckpt is None:
assert (
args.model == "DiT-XL/2"
), "Only DiT-XL/2 models are available for auto-download."
assert args.image_size in [256, 512]
assert args.num_classes == 1000
# Load model:
latent_size = args.image_size // 8
model = DiT_models[args.model](
input_size=latent_size, num_classes=args.num_classes
).to(device)
ckpt_path = args.ckpt or f"DiT-XL-2-{args.image_size}x{args.image_size}.pt"
state_dict = find_model(ckpt_path)
model.load_state_dict(state_dict)
model.eval() # important!
with open("smoothcache_schedules/50-N-3-threshold-0.35.json", "r") as f:
schedule = json.load(f)
cache_helper = DiTCacheHelper(model, schedule=schedule)
# number of timesteps should be consistent with provided schedules
diffusion = create_diffusion(str(len(schedule[cache_helper.components_to_wrap[0]])))
# Enable the caching helper
cache_helper.enable()
# Sample images:
samples = diffusion.p_sample_loop(
model.forward_with_cfg,
z.shape,
z,
clip_denoised=False,
model_kwargs=model_kwargs,
progress=True,
device=device,
)
samples, _ = samples.chunk(2, dim=0) # Remove null class samples
samples = vae.decode(samples / 0.18215).sample
# Disable the caching helper after sampling
cache_helper.disable()
# Save and display images:
save_image(samples, "sample.png", nrow=4, normalize=True, value_range=(-1, 1))
(WIP)
SmoothCache is licensed under the Apache-2.0 license.
@misc{liu2024smoothcacheuniversalinferenceacceleration,
title={SmoothCache: A Universal Inference Acceleration Technique for Diffusion Transformers},
author={Joseph Liu and Joshua Geddes and Ziyu Guo and Haomiao Jiang and Mahesh Kumar Nandwana},
year={2024},
eprint={2411.10510},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2411.10510},
}