Skip to content
/ IoT-Owl Public

IoT owl is light face detection and recognition system made for small IoT devices like raspberry pi.

License

Notifications You must be signed in to change notification settings

Ret2Me/IoT-Owl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

IoT Owl

owl
IoT owl is light face detection and recognition system made for small IoT devices like raspberry pi.

Versions

Heavy

  • with mask detection
  • without mask detection

More in the future

How does it work?

Heavy version:

  1. Raspberry pi analyzes every video frame streamed from the camera
  2. If program detects faces in the frame collects next 10 frames (in the default config, you can change this value) and choice best one then crop face from the best frame
  3. [optional] detects mask on the face
  4. Sends cropped face to Microsoft API to encode face and get information about it (for example: hair color, emotions, whether the mask is put correctly, all available options below)
  5. Sends returned token with detected face to recognition person
  6. Check information about student in local database by returned from cloud person id

diagram

Requirements

Minimal for heavy version:

  • python 3 interperter
  • camera (can be wireless)
  • space on disk (this value depends on how many users we want to recognize and how much information about them, we want to store, additionally is highly possible that you have already installed some of this libraries)
    • 1MB - database with information about users
    • 30MB - models if we want to detect persons with masks
    • 10MB - CVlib
    • 22MB - Matplotlib
    • 200MB - OpenCV
    • 1200MB - Tensorflow
      total: 1463MB

Recommended:

  • internet connection (faster internet = faster face recognition)

Benchmarks

Heavy version:
________________________
- download: 150Mbps 
+ upload: 140Mbps
0.6s ~ 0.9s

________________________
- download: 134Mbps 
+ upload: 105Mbps
0.7s ~ 1.2s

________________________
- download: 12Mbps 
+ upload: 4Mbps
1.2s ~ 1.9s

How to use

Setup:
1. You have to set in configuration file:

  • microsoft API key
  • Microsoft endpoint links with parameters
  • IP of the camera or number if it's connected directly to PC (default is "0")
  1. Download requirements from "requirements.txt"
  2. In main file import:
  • faceDetection.win_face_detection
  • os
  • sys

4. Add program to PATH by: sys.path.append(os.getcwd()) 5. Create an object of the class, run "run" function and pass to it function which will be run every time when face will be detected

Example

import faceDetection.ms_face_detection
import os
import sys
sys.path.append(os.getcwd())


def analyzeStudent(detected_persons = []):
 print(str(data))

  

def experimental():
 print("start")
 test = faceDetection.ms_face_detection.APIFaceDetection()
 test.run(analyzeStudent)


if __name__ == "__main__":
 experimental()

Example output

[
    [
        {
            "confidence": 0.5445673,
            "faceAttributes": {
                "accessories": [],
                "emotion": {
                    "anger": 0.0,
                    "contempt": 0.001,
                    "disgust": 0.0,
                    "fear": 0.0,
                    "happiness": 0.902,
                    "neutral": 0.098,
                    "sadness": 0.0,
                    "surprise": 0.0
                },
                "facialHair": {
                    "beard": 0.1,
                    "moustache": 0.1,
                    "sideburns": 0.1
                },
                "glasses": "NoGlasses",
                "smile": 0.902
            },
            "faceId": "0d56aee7-946a-4450-b1b5-563b5266b129",
            "faceRectangle": {
                "height": 138,
                "left": 44,
                "top": 60,
                "width": 138
            },
            "recognitionModel": "recognition_01",
            "userData": "\"Filip\"\"Poplewski\"\"3iT\"\"10:11:2003\""
        }
    ]
]
example greeting:
["Good morning ['Filip']"]
[
    [
        {
            "confidence": 0.78242,
            "faceAttributes": {
                "headPose": {
                    "pitch": -2.0,
                    "roll": -2.1,
                    "yaw": 18.7
                },
                "mask": {
                    "noseAndMouthCovered": false,
                    "type": "otherMaskOrOcclusion"
                }
            },
            "faceId": "66388a5c-ef86-484e-8319-b7010d782a92",
            "faceRectangle": {
                "height": 202,
                "left": 41,
                "top": 52,
                "width": 148
            },
            "recognitionModel": "recognition_04"
        }
    ]
]

Argument passed to given function

APIFaceDetection will run provided as argument function every time when it detect face at the frame.
APIFaceDetection pass JSON with all collected data about person in the image to given function  variable named "detected_persons".
Examples of all three JSON's you can find in "response.txt"

Debugging and configuration

If you want to configure face detection to your camera you can run version made for debugging. Everything what you need to do is change:

import faceDetection.ms_face_detection to import faceDetection.DEBUG_ms_face_detection

and faceDetection.ms_face_detection.APIFaceDetection() to faceDetection.DEBUG_ms_face_detection.APIFaceDetection()

It will display window with:

  • camera view,
  • detected face
  • cropped face
  • response
  • time to next face recognition
  • face quality in percents

Issue?

If you have any questions or you need help in implementation write to me :)
email:   [email protected]

About

IoT owl is light face detection and recognition system made for small IoT devices like raspberry pi.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages