Skip to content
Open
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions docs/release_notes.rst
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,8 @@ Upcoming Release

* Corrected CO2 content in biogas

* Change to DEA costs for Fischer-Tropsch and methanolisation

`v0.13.2 <https://github.com/PyPSA/technology-data/releases/tag/v0.13.2>`__ (13th June 2025)
=======================================================================================

Expand Down
28 changes: 0 additions & 28 deletions inputs/manual_input.csv
Original file line number Diff line number Diff line change
@@ -1,15 +1,6 @@
technology,parameter,year,value,unit,currency_year,source,further_description
methanation,investment,2020,748,EUR/kW_CH4,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",
methanation,lifetime,2020,20,years,2017,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants."
methanation,FOM,2020,3,%/year,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",
methanation,hydrogen-input,0,1.282,MWh_H2/MWh_CH4,,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon).
methanation,carbondioxide-input,0,0.198,t_CO2/MWh_CH4,,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion).
methanation,investment,2030,654,EUR/kW_CH4,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",
methanation,lifetime,2030,20,years,2017,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants."
methanation,FOM,2030,3,%/year,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",
methanation,investment,2050,500,EUR/kW_CH4,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",
methanation,lifetime,2050,20,years,2017,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants."
methanation,FOM,2050,3,%/year,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",
H2 (g) pipeline,investment,2020,363.08,EUR/MW/km,2023,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)"
H2 (g) pipeline,lifetime,2020,50,years,2015,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413."
H2 (g) pipeline,FOM,2020,4,%/year,2015,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413."
Expand Down Expand Up @@ -219,16 +210,6 @@ methanol-to-kerosene,lifetime,2050,30,years,-,"Concawe (2022): E-Fuels: A techno
methanol-to-kerosene,investment,2050,200000,EUR/MW_kerosene,2020,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",
methanol-to-kerosene,FOM,2050,4.5,%/year,2020,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",
methanol-to-kerosene,VOM,2050,1.35,EUR/MWh_kerosene,2020,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",
Fischer-Tropsch,efficiency,2020,0.799,per unit,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",
Fischer-Tropsch,investment,2020,788000,EUR/MW_FT,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected."
Fischer-Tropsch,lifetime,2020,20,years,2017,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",
Fischer-Tropsch,FOM,2020,3,%/year,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",
Fischer-Tropsch,investment,2030,677000,EUR/MW_FT,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected."
Fischer-Tropsch,lifetime,2030,20,years,2017,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",
Fischer-Tropsch,FOM,2030,3,%/year,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",
Fischer-Tropsch,investment,2050,500000,EUR/MW_FT,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected."
Fischer-Tropsch,lifetime,2050,20,years,2017,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",
Fischer-Tropsch,FOM,2050,3,%/year,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",
Fischer-Tropsch,hydrogen-input,2020,1.531,MWh_H2/MWh_FT,,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)."
Fischer-Tropsch,hydrogen-input,2030,1.421,MWh_H2/MWh_FT,,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)."
Fischer-Tropsch,hydrogen-input,2040,1.363,MWh_H2/MWh_FT,,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)."
Expand All @@ -241,15 +222,6 @@ Fischer-Tropsch,carbondioxide-input,2020,0.36,t_CO2/MWh_FT,,"DEA (2022): Technol
Fischer-Tropsch,carbondioxide-input,2030,0.326,t_CO2/MWh_FT,,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)."
Fischer-Tropsch,carbondioxide-input,2040,0.301,t_CO2/MWh_FT,,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)."
Fischer-Tropsch,carbondioxide-input,2050,0.276,t_CO2/MWh_FT,,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)."
methanolisation,investment,2020,788000,EUR/MW_MeOH,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected."
methanolisation,lifetime,2020,20,years,2017,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",
methanolisation,FOM,2020,3,%/year,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",
methanolisation,investment,2030,677000,EUR/MW_MeOH,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected."
methanolisation,lifetime,2030,20,years,2017,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",
methanolisation,FOM,2030,3,%/year,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",
methanolisation,investment,2050,500000,EUR/MW_MeOH,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected."
methanolisation,lifetime,2050,20,years,2017,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",
methanolisation,FOM,2050,3,%/year,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",
methanolisation,electricity-input,0,0.271,MWh_e/MWh_MeOH,,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",
methanolisation,hydrogen-input,0,1.138,MWh_H2/MWh_MeOH,,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH
methanolisation,carbondioxide-input,0,0.248,t_CO2/MWh_MeOH,,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",
Expand Down
Loading
Loading