Skip to content

[DEMO] Qubit-Efficient Encoding Techniques for Solving QUBO Problems #1345

@supreethmv

Description

@supreethmv

General information

Name
Supreeth Mysore Venkatesh (supreethmv).

Affiliation (optional)
Technical University of Kaiserslautern, German Researcher Center for Artificial Intelligence

Twitter (optional)
supreethmv

Image (optional)
https://github.com/supreethmv/Pennylane-ImageSegmentation/blob/main/_repo_data/vqa-segmentation.png


Demo information

Title
Qubit-Efficient Encoding Techniques for Solving QUBO Problems

Abstract
This demo explores qubit-efficient alternatives to QAOA that are not only suitable for today's NISQ (Noisy Intermediate-Scale Quantum) devices, but also generalizable across combinatorial optimization problems. We specifically demonstrate these methods in the context of unsupervised image segmentation.

Relevant links
Pennylane Implementation: https://github.com/supreethmv/Pennylane-ImageSegmentation
Paper: https://doi.org/10.1109/QCE60285.2024.00059

Metadata

Metadata

Assignees

No one assigned

    Labels

    demosUpdating the demonstrations/tutorials

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions