forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[feature] text_to_sam_clip (PaddlePaddle#3187)
- Loading branch information
Showing
10 changed files
with
798 additions
and
36 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,239 @@ | ||
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import os | ||
import cv2 | ||
import time | ||
import sys | ||
import argparse | ||
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), "..")) | ||
|
||
import paddle | ||
import paddle.nn.functional as F | ||
import numpy as np | ||
from PIL import Image, ImageDraw | ||
import matplotlib.pyplot as plt | ||
|
||
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator | ||
from segment_anything.modeling.clip_paddle import build_clip_model, _transform | ||
from segment_anything.utils.sample_tokenizer import tokenize | ||
from paddleseg.utils.visualize import get_pseudo_color_map, get_color_map_list | ||
|
||
ID_PHOTO_IMAGE_DEMO = "./examples/cityscapes_demo.png" | ||
CACHE_DIR = ".temp" | ||
model_link = { | ||
'vit_h': | ||
"https://bj.bcebos.com/paddleseg/dygraph/paddlesegAnything/vit_h/model.pdparams", | ||
'vit_l': | ||
"https://bj.bcebos.com/paddleseg/dygraph/paddlesegAnything/vit_l/model.pdparams", | ||
'vit_b': | ||
"https://bj.bcebos.com/paddleseg/dygraph/paddlesegAnything/vit_b/model.pdparams", | ||
'clip_b_32': | ||
"https://bj.bcebos.com/paddleseg/dygraph/clip/vit_b_32_pretrain/clip_vit_b_32.pdparams" | ||
} | ||
|
||
parser = argparse.ArgumentParser(description=( | ||
"Runs automatic mask generation on an input image or directory of images, " | ||
"and outputs masks as either PNGs or COCO-style RLEs. Requires open-cv, " | ||
"as well as pycocotools if saving in RLE format.")) | ||
|
||
parser.add_argument( | ||
"--model-type", | ||
type=str, | ||
default="vit_h", | ||
required=True, | ||
help="The type of model to load, in ['vit_h', 'vit_l', 'vit_b']", ) | ||
|
||
|
||
def download(img): | ||
if not os.path.exists(CACHE_DIR): | ||
os.makedirs(CACHE_DIR) | ||
while True: | ||
name = str(int(time.time())) | ||
tmp_name = os.path.join(CACHE_DIR, name + '.jpg') | ||
if not os.path.exists(tmp_name): | ||
break | ||
else: | ||
time.sleep(1) | ||
img.save(tmp_name, 'png') | ||
return tmp_name | ||
|
||
|
||
def segment_image(image, segment_mask): | ||
image_array = np.array(image) | ||
gray_image = Image.new("RGB", image.size, (128, 128, 128)) | ||
segmented_image_array = np.zeros_like(image_array) | ||
segmented_image_array[segment_mask] = image_array[segment_mask] | ||
segmented_image = Image.fromarray(segmented_image_array) | ||
transparency = np.zeros_like(segment_mask, dtype=np.uint8) | ||
transparency[segment_mask] = 255 | ||
transparency_image = Image.fromarray(transparency, mode='L') | ||
gray_image.paste(segmented_image, mask=transparency_image) | ||
return gray_image | ||
|
||
|
||
def image_text_match(cropped_objects, text_query): | ||
transformed_images = [transform(image) for image in cropped_objects] | ||
tokenized_text = tokenize([text_query]) | ||
batch_images = paddle.stack(transformed_images) | ||
image_features = model.encode_image(batch_images) | ||
print("encode_image done!") | ||
text_features = model.encode_text(tokenized_text) | ||
print("encode_text done!") | ||
image_features /= image_features.norm(axis=-1, keepdim=True) | ||
text_features /= text_features.norm(axis=-1, keepdim=True) | ||
probs = 100. * image_features @text_features.T | ||
return F.softmax(probs[:, 0], axis=0) | ||
|
||
|
||
def masks2pseudomap(masks): | ||
result = np.ones(masks[0]["segmentation"].shape, dtype=np.uint8) * 255 | ||
for i, mask_data in enumerate(masks): | ||
result[mask_data["segmentation"] == 1] = i + 1 | ||
pred_result = result | ||
result = get_pseudo_color_map(result) | ||
return pred_result, result | ||
|
||
|
||
def visualize(image, result, color_map, weight=0.6): | ||
""" | ||
Convert predict result to color image, and save added image. | ||
Args: | ||
image (str): The path of origin image. | ||
result (np.ndarray): The predict result of image. | ||
color_map (list): The color used to save the prediction results. | ||
save_dir (str): The directory for saving visual image. Default: None. | ||
weight (float): The image weight of visual image, and the result weight is (1 - weight). Default: 0.6 | ||
Returns: | ||
vis_result (np.ndarray): If `save_dir` is None, return the visualized result. | ||
""" | ||
|
||
color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)] | ||
color_map = np.array(color_map).astype("uint8") | ||
# Use OpenCV LUT for color mapping | ||
c1 = cv2.LUT(result, color_map[:, 0]) | ||
c2 = cv2.LUT(result, color_map[:, 1]) | ||
c3 = cv2.LUT(result, color_map[:, 2]) | ||
pseudo_img = np.dstack((c3, c2, c1)) | ||
|
||
vis_result = cv2.addWeighted(image, weight, pseudo_img, 1 - weight, 0) | ||
return vis_result | ||
|
||
|
||
def get_id_photo_output(image, text): | ||
""" | ||
Get the special size and background photo. | ||
Args: | ||
img(numpy:ndarray): The image array. | ||
size(str): The size user specified. | ||
bg(str): The background color user specified. | ||
download_size(str): The size for image saving. | ||
""" | ||
image_ori = image.copy() | ||
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | ||
masks = mask_generator.generate(image) | ||
pred_result, pseudo_map = masks2pseudomap(masks) # PIL Image | ||
added_pseudo_map = visualize( | ||
image, pred_result, color_map=get_color_map_list(256)) | ||
cropped_objects = [] | ||
image_pil = Image.fromarray(image) | ||
for mask in masks: | ||
bbox = [ | ||
mask["bbox"][0], mask["bbox"][1], mask["bbox"][0] + mask["bbox"][2], | ||
mask["bbox"][1] + mask["bbox"][3] | ||
] | ||
cropped_objects.append( | ||
segment_image(image_pil, mask["segmentation"]).crop(bbox)) | ||
|
||
scores = image_text_match(cropped_objects, str(text)) | ||
text_matching_masks = [] | ||
for idx, score in enumerate(scores): | ||
if score < 0.05: | ||
continue | ||
text_matching_mask = Image.fromarray( | ||
masks[idx]["segmentation"].astype('uint8') * 255) | ||
text_matching_masks.append(text_matching_mask) | ||
|
||
image_pil_ori = Image.fromarray(image_ori) | ||
alpha_image = Image.new('RGBA', image_pil_ori.size, (0, 0, 0, 0)) | ||
alpha_color = (255, 0, 0, 180) | ||
|
||
draw = ImageDraw.Draw(alpha_image) | ||
for text_matching_mask in text_matching_masks: | ||
draw.bitmap((0, 0), text_matching_mask, fill=alpha_color) | ||
|
||
result_image = Image.alpha_composite( | ||
image_pil_ori.convert('RGBA'), alpha_image) | ||
res_download = download(result_image) | ||
return result_image, added_pseudo_map, res_download | ||
|
||
|
||
def gradio_display(): | ||
import gradio as gr | ||
examples_sam = [["./examples/cityscapes_demo.png", "a photo of car"], | ||
["examples/dog.jpg", "dog"], | ||
["examples/zixingche.jpeg", "kid"]] | ||
|
||
demo_mask_sam = gr.Interface( | ||
fn=get_id_photo_output, | ||
inputs=[ | ||
gr.Image( | ||
value=ID_PHOTO_IMAGE_DEMO, | ||
label="Input image").style(height=400), gr.inputs.Textbox( | ||
lines=3, | ||
placeholder=None, | ||
default="a photo of car", | ||
label='🔥 Input text prompt 🔥', | ||
optional=False) | ||
], | ||
outputs=[ | ||
gr.Image( | ||
label="Output based on text", | ||
interactive=False).style(height=300), gr.Image( | ||
label="Output mask", interactive=False).style(height=300) | ||
], | ||
examples=examples_sam, | ||
description="<p> \ | ||
<strong>SAM+CLIP: Text prompt for segmentation. </strong> <br>\ | ||
Choose an example below; Or, upload by yourself: <br>\ | ||
1. Upload images to be tested to 'input image'. 2. Input a text prompt to 'input text prompt' and click 'submit'</strong>. <br>\ | ||
</p>", | ||
cache_examples=False, | ||
allow_flagging="never", ) | ||
|
||
demo = gr.TabbedInterface( | ||
[demo_mask_sam, ], ['SAM+CLIP(Text to Segment)'], | ||
title=" 🔥 Text to Segment Anything with PaddleSeg 🔥") | ||
demo.launch( | ||
server_name="0.0.0.0", enable_queue=False, server_port=8078, share=True) | ||
|
||
|
||
args = parser.parse_args() | ||
print("Loading model...") | ||
|
||
if paddle.is_compiled_with_cuda(): | ||
paddle.set_device("gpu") | ||
else: | ||
paddle.set_device("cpu") | ||
|
||
sam = sam_model_registry[args.model_type]( | ||
checkpoint=model_link[args.model_type]) | ||
mask_generator = SamAutomaticMaskGenerator(sam) | ||
|
||
model, transform = build_clip_model(model_link["clip_b_32"]) | ||
gradio_display() |
Oops, something went wrong.