forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Feature] Add GloRe (PaddlePaddle#1951)
- Loading branch information
Showing
5 changed files
with
261 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
# Graph-Based Global Reasoning Networks | ||
|
||
## Reference | ||
|
||
> Chen, Yunpeng, Marcus Rohrbach, Zhicheng Yan, Yan Shuicheng, Jiashi Feng, and Yannis Kalantidis. "Graph-based global reasoning networks." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 433-442. 2019. | ||
|
||
## Performance | ||
|
||
### Cityscapes | ||
|
||
| Model | Backbone | Resolution | Training Iters | mIoU | mIoU (flip) | mIoU (ms+flip) | Links | | ||
|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:| | ||
|GloRe|ResNet50_OS8|1024x512|80000|78.26%|78.61%|78.72%|[model](https://bj.bcebos.com/paddleseg/dygraph/cityscapes/glore_resnet50_os8_cityscapes_1024x512_80k/model.pdparams) \| [log](https://bj.bcebos.com/paddleseg/dygraph/cityscapes/glore_resnet50_os8_cityscapes_1024x512_80k/train.log) \| [vdl](https://paddlepaddle.org.cn/paddle/visualdl/service/app?id=de754e39ac9de4d2e951915c2334d6ec) | | ||
|
||
|
||
### Pascal VOC 2012 + Aug | ||
|
||
| Model | Backbone | Resolution | Training Iters | mIoU | mIoU (flip) | mIoU (ms+flip) | Links | | ||
|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:| | ||
|GloRe|ResNet50_OS8|512x512|40000|80.16%|80.35%|80.40%|[model](https://bj.bcebos.com/paddleseg/dygraph/pascal_voc12/glore_resnet50_os8_voc12aug_512x512_40k/model.pdparams) \| [log](https://bj.bcebos.com/paddleseg/dygraph/pascal_voc12/glore_resnet50_os8_voc12aug_512x512_40k/train.log) \| [vdl](https://paddlepaddle.org.cn/paddle/visualdl/service/app?id=e40c1dd8d4fcbf2dcda01242dec9d9b5) | |
23 changes: 23 additions & 0 deletions
23
configs/glore/glore_resnet50_os8_cityscapes_1024x512_80k.yml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,23 @@ | ||
_base_: '../_base_/cityscapes.yml' | ||
|
||
batch_size: 2 | ||
iters: 80000 | ||
|
||
learning_rate: | ||
decay: | ||
end_lr: 1.0e-5 | ||
|
||
loss: | ||
types: | ||
- type: CrossEntropyLoss | ||
coef: [1, 0.4] | ||
|
||
model: | ||
type: GloRe | ||
backbone: | ||
type: ResNet50_vd | ||
output_stride: 8 | ||
pretrained: https://bj.bcebos.com/paddleseg/dygraph/resnet50_vd_ssld_v2.tar.gz | ||
enable_auxiliary_loss: True | ||
align_corners: False | ||
pretrained: null |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
_base_: '../_base_/pascal_voc12aug.yml' | ||
|
||
|
||
model: | ||
type: GloRe | ||
backbone: | ||
type: ResNet50_vd | ||
output_stride: 8 | ||
pretrained: https://bj.bcebos.com/paddleseg/dygraph/resnet50_vd_ssld_v2.tar.gz | ||
enable_auxiliary_loss: True | ||
align_corners: False | ||
pretrained: null | ||
|
||
loss: | ||
types: | ||
- type: CrossEntropyLoss | ||
coef: [1, 0.4] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,199 @@ | ||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import paddle | ||
import paddle.nn as nn | ||
import paddle.nn.functional as F | ||
|
||
from paddleseg.cvlibs import manager | ||
from paddleseg.models import layers | ||
from paddleseg.utils import utils | ||
|
||
|
||
@manager.MODELS.add_component | ||
class GloRe(nn.Layer): | ||
""" | ||
The GloRe implementation based on PaddlePaddle. | ||
The original article refers to: | ||
Chen, Yunpeng, et al. "Graph-Based Global Reasoning Networks" | ||
(https://arxiv.org/pdf/1811.12814.pdf) | ||
Args: | ||
num_classes (int): The unique number of target classes. | ||
backbone (Paddle.nn.Layer): Backbone network, currently support Resnet50/101. | ||
backbone_indices (tuple, optional): Two values in the tuple indicate the indices of output of backbone. | ||
gru_channels (int, optional): The number of input channels in GloRe Unit. Default: 512. | ||
gru_num_state (int, optional): The number of states in GloRe Unit. Default: 128. | ||
gru_num_node (tuple, optional): The number of nodes in GloRe Unit. Default: Default: 128. | ||
enable_auxiliary_loss (bool, optional): A bool value indicates whether adding auxiliary loss. Default: True. | ||
align_corners (bool, optional): An argument of F.interpolate. It should be set to False when the feature size is even, | ||
e.g. 1024x512, otherwise it is True, e.g. 769x769. Default: False. | ||
pretrained (str, optional): The path or url of pretrained model. Default: None. | ||
""" | ||
|
||
def __init__(self, | ||
num_classes, | ||
backbone, | ||
backbone_indices=(2, 3), | ||
gru_channels=512, | ||
gru_num_state=128, | ||
gru_num_node=64, | ||
enable_auxiliary_loss=True, | ||
align_corners=False, | ||
pretrained=None): | ||
super().__init__() | ||
|
||
self.backbone = backbone | ||
backbone_channels = [ | ||
backbone.feat_channels[i] for i in backbone_indices | ||
] | ||
|
||
self.head = GloReHead(num_classes, backbone_indices, backbone_channels, | ||
gru_channels, gru_num_state, gru_num_node, | ||
enable_auxiliary_loss) | ||
self.align_corners = align_corners | ||
self.pretrained = pretrained | ||
self.init_weight() | ||
|
||
def forward(self, x): | ||
feat_list = self.backbone(x) | ||
logit_list = self.head(feat_list) | ||
return [ | ||
F.interpolate( | ||
logit, | ||
x.shape[2:], | ||
mode='bilinear', | ||
align_corners=self.align_corners) for logit in logit_list | ||
] | ||
|
||
def init_weight(self): | ||
if self.pretrained is not None: | ||
utils.load_entire_model(self, self.pretrained) | ||
|
||
|
||
class GloReHead(nn.Layer): | ||
|
||
def __init__(self, | ||
num_classes, | ||
backbone_indices, | ||
backbone_channels, | ||
gru_channels=512, | ||
gru_num_state=128, | ||
gru_num_node=64, | ||
enable_auxiliary_loss=True): | ||
super().__init__() | ||
|
||
in_channels = backbone_channels[1] | ||
self.conv_bn_relu = layers.ConvBNReLU( | ||
in_channels, gru_channels, 1, bias_attr=False) | ||
self.gru_module = GruModule( | ||
num_input=gru_channels, | ||
num_state=gru_num_state, | ||
num_node=gru_num_node) | ||
|
||
self.dropout = nn.Dropout(0.1) | ||
self.classifier = nn.Conv2D(512, num_classes, kernel_size=1) | ||
self.auxlayer = layers.AuxLayer( | ||
in_channels=backbone_channels[0], | ||
inter_channels=backbone_channels[0] // 4, | ||
out_channels=num_classes) | ||
|
||
self.backbone_indices = backbone_indices | ||
self.enable_auxiliary_loss = enable_auxiliary_loss | ||
|
||
def forward(self, feat_list): | ||
|
||
logit_list = [] | ||
x = feat_list[self.backbone_indices[1]] | ||
|
||
feature = self.conv_bn_relu(x) | ||
gru_output = self.gru_module(feature) | ||
output = self.dropout(gru_output) | ||
logit = self.classifier(output) | ||
logit_list.append(logit) | ||
|
||
if self.enable_auxiliary_loss: | ||
low_level_feat = feat_list[self.backbone_indices[0]] | ||
auxiliary_logit = self.auxlayer(low_level_feat) | ||
logit_list.append(auxiliary_logit) | ||
|
||
return logit_list | ||
|
||
|
||
class GCN(nn.Layer): | ||
def __init__(self, num_state, num_node, bias=False): | ||
super(GCN, self).__init__() | ||
self.conv1 = nn.Conv1D(num_node, num_node, kernel_size=1) | ||
self.relu = nn.ReLU() | ||
self.conv2 = nn.Conv1D( | ||
num_state, num_state, kernel_size=1, bias_attr=bias) | ||
|
||
def forward(self, x): | ||
h = self.conv1(paddle.transpose(x, perm=(0, 2, 1))) | ||
h = paddle.transpose(h, perm=(0, 2, 1)) | ||
h = h + x | ||
h = self.relu(self.conv2(h)) | ||
return h | ||
|
||
|
||
class GruModule(nn.Layer): | ||
def __init__(self, | ||
num_input=512, | ||
num_state=128, | ||
num_node=64, | ||
normalize=False): | ||
super(GruModule, self).__init__() | ||
self.normalize = normalize | ||
self.num_state = num_state | ||
self.num_node = num_node | ||
self.reduction_dim = nn.Conv2D(num_input, num_state, kernel_size=1) | ||
self.projection_mat = nn.Conv2D(num_input, num_node, kernel_size=1) | ||
self.gcn = GCN(num_state=self.num_state, num_node=self.num_node) | ||
self.extend_dim = nn.Conv2D( | ||
self.num_state, num_input, kernel_size=1, bias_attr=False) | ||
self.extend_bn = nn.SyncBatchNorm(num_input, epsilon=1e-4) | ||
|
||
def forward(self, input): | ||
n, c, h, w = input.shape | ||
# B, C, H, W | ||
reduction_dim = self.reduction_dim(input) | ||
# B, N, H, W | ||
mat_B = self.projection_mat(input) | ||
# B, C, H*W | ||
reshaped_reduction = paddle.reshape( | ||
reduction_dim, shape=[n, self.num_state, h * w]) | ||
# B, N, H*W | ||
reshaped_B = paddle.reshape(mat_B, shape=[n, self.num_node, h * w]) | ||
# B, N, H*W | ||
reproject = reshaped_B | ||
# B, C, N | ||
node_state_V = paddle.matmul( | ||
reshaped_reduction, paddle.transpose( | ||
reshaped_B, perm=[0, 2, 1])) | ||
|
||
if self.normalize: | ||
node_state_V = node_state_V * (1. / reshaped_reduction.shape[2]) | ||
|
||
# B, C, N | ||
gcn_out = self.gcn(node_state_V) | ||
# B, C, H*W | ||
Y = paddle.matmul(gcn_out, reproject) | ||
# B, C, H, W | ||
Y = paddle.reshape(Y, shape=[n, self.num_state, h, w]) | ||
Y_extend = self.extend_dim(Y) | ||
Y_extend = self.extend_bn(Y_extend) | ||
|
||
out = input + Y_extend | ||
return out |