Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Updata doc #2044

Merged
merged 5 commits into from
Jun 17, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 5 additions & 20 deletions docs/source/install.md
Original file line number Diff line number Diff line change
Expand Up @@ -139,28 +139,13 @@ pip install . -i https://pypi.tuna.tsinghua.edu.cn/simple
To avoid the trouble of environment setup, running in a Docker container is highly recommended. Otherwise, if you work on `Ubuntu` with `root` privilege, you can still complete the installation.

### Choice 1: Running in Docker Container (Recommend)
Docker is an open-source tool to build, ship, and run distributed applications in an isolated environment. A Docker image for this project has been provided in [hub.docker.com](https://hub.docker.com) with dependencies of cuda and cudnn installed. This Docker image requires the support of NVIDIA GPU, so please make sure its availability and the [nvidia-docker](https://github.com/NVIDIA/nvidia-docker) has been installed.
Docker is an open-source tool to build, ship, and run distributed applications in an isolated environment. If you do not have a Docker environment, please refer to [Docker](https://www.docker.com/). If you will use GPU version, you also need to install [nvidia-docker](https://github.com/NVIDIA/nvidia-docker).

Take several steps to launch the Docker image:
- Download the Docker image
We provide docker images containing the latest PaddleSpeech code, and all environment and package dependencies are pre-installed. All you have to do is to **pull and run the docker image**. Then you can enjoy PaddleSpeech without any extra steps.

For example, pull paddle 2.2.0 image:
```bash
sudo nvidia-docker pull registry.baidubce.com/paddlepaddle/paddle:2.2.0-gpu-cuda10.2-cudnn7
```
- Clone this repository
```bash
git clone https://github.com/PaddlePaddle/PaddleSpeech.git
```
- Run the Docker image
```bash
sudo nvidia-docker run --net=host --ipc=host --rm -it -v $(pwd)/PaddleSpeech:/PaddleSpeech registry.baidubce.com/paddlepaddle/paddle:2.2.0-gpu-cuda10.2-cudnn7 /bin/bash
```
- Enter PaddleSpeech directory.
```bash
cd /PaddleSpeech
```
Now you can execute training, inference, and hyper-parameters tuning in Docker container.
Get these images and guidance in [docker hub](https://hub.docker.com/repository/docker/paddlecloud/paddlespeech), including CPU, GPU, ROCm environment versions.

If you have some customized requirements about automatic building docker images, you can get it in github repo [PaddlePaddle/PaddleCloud](https://github.com/PaddlePaddle/PaddleCloud/tree/main/tekton).

### Choice 2: Running in Ubuntu with Root Privilege
- Install `build-essential` by apt
Expand Down
28 changes: 8 additions & 20 deletions docs/source/install_cn.md
Original file line number Diff line number Diff line change
Expand Up @@ -130,26 +130,14 @@ pip install . -i https://pypi.tuna.tsinghua.edu.cn/simple
- 选择 2: 使用`Ubuntu` ,并且拥有 root 权限。

为了避免各种环境配置问题,我们非常推荐你使用 docker 容器。如果你不想使用 docker,但是可以使用拥有 root 权限的 Ubuntu 系统,你也可以完成**困难**方式的安装。
### 选择1: 使用Docker容器(推荐)
Docker 是一种开源工具,用于在和系统本身环境相隔离的环境中构建、发布和运行各类应用程序。你可以访问 [hub.docker.com](https://hub.docker.com) 来下载各种版本的 docker,目前已经有适用于 `PaddleSpeech` 的 docker 提供在了该网站上。Docker 镜像需要使用 Nvidia GPU,所以你也需要提前安装好 [nvidia-docker](https://github.com/NVIDIA/nvidia-docker) 。
你需要完成几个步骤来启动docker:
- 下载 docker 镜像:
例如,拉取 paddle2.2.0 镜像:
```bash
sudo nvidia-docker pull registry.baidubce.com/paddlepaddle/paddle:2.2.0-gpu-cuda10.2-cudnn7
```
- 克隆 `PaddleSpeech` 仓库
```bash
git clone https://github.com/PaddlePaddle/PaddleSpeech.git
```
- 启动 docker 镜像
```bash
sudo nvidia-docker run --net=host --ipc=host --rm -it -v $(pwd)/PaddleSpeech:/PaddleSpeech registry.baidubce.com/paddlepaddle/paddle:2.2.0-gpu-cuda10.2-cudnn7 /bin/bash
```
- 进入 PaddleSpeech 目录
```bash
cd /PaddleSpeech
```
### 选择1: 使用 Docker 容器(推荐)
Docker 是一种开源工具,用于在和系统本身环境相隔离的环境中构建、发布和运行各类应用程序。如果您没有 Docker 运行环境,请参考 [Docker 官网](https://www.docker.com/)进行安装,如果您准备使用 GPU 版本镜像,还需要提前安装好 [nvidia-docker](https://github.com/NVIDIA/nvidia-docker) 。

我们提供了包含最新 PaddleSpeech 代码的 docker 镜像,并预先安装好了所有的环境和库依赖,您只需要**拉取并运行 docker 镜像**,无需其他任何额外操作,即可开始享用 PaddleSpeech 的所有功能。

在 [Docker Hub](https://hub.docker.com/repository/docker/paddlecloud/paddlespeech) 中获取这些镜像及相应的使用指南,包括 CPU、GPU、ROCm 版本。

如果您对自动化制作docker镜像感兴趣,或有自定义需求,请访问 [PaddlePaddle/PaddleCloud](https://github.com/PaddlePaddle/PaddleCloud/tree/main/tekton) 做进一步了解。
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

docker 英文前后请用空格隔开

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

已更新

完成这些以后,你就可以在 docker 容器中执行训练、推理和超参 fine-tune。
### 选择2: 使用有 root 权限的 Ubuntu
- 使用apt安装 `build-essential`
Expand Down