Skip to content

Commit

Permalink
Merge pull request #1609 from qingen/database-search
Browse files Browse the repository at this point in the history
[vec][search] update to paddlespeech model
  • Loading branch information
zh794390558 authored Mar 28, 2022
2 parents d60856b + 612ba54 commit 500080a
Show file tree
Hide file tree
Showing 7 changed files with 187 additions and 83 deletions.
118 changes: 85 additions & 33 deletions demos/audio_searching/README.md

Large diffs are not rendered by default.

115 changes: 84 additions & 31 deletions demos/audio_searching/README_cn.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,21 +4,26 @@
# 音频相似性检索
## 介绍

随着互联网不断发展,电子邮件、社交媒体照片、直播视频、客服语音等非结构化数据已经变得越来越普遍。如果想要使用计算机来处理这些数据,需要使用 embedding 技术将这些数据转化为向量 vector,然后进行存储、建索引、并查询
随着互联网不断发展,电子邮件、社交媒体照片、直播视频、客服语音等非结构化数据已经变得越来越普遍。如果想要使用计算机来处理这些数据,需要使用 embedding 技术将这些数据转化为向量 vector,然后进行存储、建索引、并查询

但是,当数据量很大,比如上亿条音频要做相似度搜索,就比较困难了。穷举法固然可行,但非常耗时。针对这种场景,该 demo 将介绍如何使用开源向量数据库 Milvus 搭建音频相似度检索系统
但是,当数据量很大,比如上亿条音频要做相似度搜索,就比较困难了。穷举法固然可行,但非常耗时。针对这种场景,该 demo 将介绍如何使用开源向量数据库 Milvus 搭建音频相似度检索系统

音频检索(如演讲、音乐、说话人等检索)实现了在海量音频数据中查询并找出相似声音(或相同说话人)片段。音频相似性检索系统可用于识别相似的音效、最大限度减少知识产权侵权等,还可以快速的检索声纹库、帮助企业控制欺诈和身份盗用等。在音频数据的分类和统计分析中,音频检索也发挥着重要作用
音频检索(如演讲、音乐、说话人等检索)实现了在海量音频数据中查询并找出相似声音(或相同说话人)片段。音频相似性检索系统可用于识别相似的音效、最大限度减少知识产权侵权等,还可以快速的检索声纹库、帮助企业控制欺诈和身份盗用等。在音频数据的分类和统计分析中,音频检索也发挥着重要作用

在本 demo 中,你将学会如何构建一个音频检索系统,用来检索相似的声音片段。使用基于 PaddleSpeech 预训练模型(音频分类模型,说话人识别模型等)将上传的音频片段转换为向量数据,并存储在 Milvus 中。Milvus 自动为每个向量生成唯一的 ID,然后将 ID 和 相应的音频信息(音频id,音频的说话人id等等)存储在 MySQL,这样就完成建库的工作。用户在检索时,上传测试音频,得到向量,然后在 Milvus 中进行向量相似度搜索,Milvus 返回的检索结果为向量 ID,通过 ID 在 MySQL 内部查询相应的音频信息即可
在本 demo 中,你将学会如何构建一个音频检索系统,用来检索相似的声音片段。使用基于 PaddleSpeech 预训练模型(音频分类模型,说话人识别模型等)将上传的音频片段转换为向量数据,并存储在 Milvus 中。Milvus 自动为每个向量生成唯一的 ID,然后将 ID 和 相应的音频信息(音频id,音频的说话人id等等)存储在 MySQL,这样就完成建库的工作。用户在检索时,上传测试音频,得到向量,然后在 Milvus 中进行向量相似度搜索,Milvus 返回的检索结果为向量 ID,通过 ID 在 MySQL 内部查询相应的音频信息即可

![音频检索流程图](./img/audio_searching.png)

注:该 demo 使用 [CN-Celeb](http://openslr.org/82/) 数据集,包括至少 650000 条音频,3000 个说话人,来建立音频向量库(音频特征,或音频说话人特征),然后通过预设的距离计算方式进行音频(或说话人)检索,这里面数据集也可以使用其他的,根据需要调整,如Librispeech,VoxCeleb,UrbanSound,GloVe,MNIST等
注:该 demo 使用 [CN-Celeb](http://openslr.org/82/) 数据集,包括至少 650000 条音频,3000 个说话人,来建立音频向量库(音频特征,或音频说话人特征),然后通过预设的距离计算方式进行音频(或说话人)检索,这里面数据集也可以使用其他的,根据需要调整,如Librispeech,VoxCeleb,UrbanSound,GloVe,MNIST等

## 使用方法
### 1. MySQL 和 Milvus 安装
音频相似度搜索系统需要用到 Milvus, MySQL 服务。 我们可以通过 [docker-compose.yaml](./docker-compose.yaml) 一键启动这些容器,所以请确保在运行之前已经安装了 [Docker Engine](https://docs.docker.com/engine/install/)[Docker Compose](https://docs.docker.com/compose/install/)。 即
### 1. PaddleSpeech 安装
音频向量的提取需要用到基于 PaddleSpeech 训练的模型,所以请确保在运行之前已经安装了 PaddleSpeech,具体安装步骤,详见[安装文档](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/docs/source/install_cn.md)

你可以从 easy,medium,hard 三中方式中选择一种方式安装。

### 2. MySQL 和 Milvus 安装
音频相似性的检索需要用到 Milvus, MySQL 服务。 我们可以通过 [docker-compose.yaml](./docker-compose.yaml) 一键启动这些容器,所以请确保在运行之前已经安装了 [Docker Engine](https://docs.docker.com/engine/install/)[Docker Compose](https://docs.docker.com/compose/install/)。 即

```bash
docker-compose -f docker-compose.yaml up -d
Expand Down Expand Up @@ -47,8 +52,8 @@ ffce340b3790 minio/minio:RELEASE.2020-12-03T00-03-10Z "/usr/bin/docker-ent…"

```

### 2. 配置并启动 API 服务
启动系统服务程序,它会提供基于 Http 后端服务
### 3. 配置并启动 API 服务
启动系统服务程序,它会提供基于 HTTP 后端服务

- 安装服务依赖的 python 基础包

Expand Down Expand Up @@ -77,24 +82,24 @@ ffce340b3790 minio/minio:RELEASE.2020-12-03T00-03-10Z "/usr/bin/docker-ent…"
启动用 Fastapi 构建的服务

```bash
export PYTHONPATH=$PYTHONPATH:./src
export PYTHONPATH=$PYTHONPATH:./src:../../paddleaudio
python src/main.py
```

然后你会看到应用程序启动:

```bash
INFO: Started server process [3949]
2022-03-07 17:39:14,864 | INFO | server.py | serve | 75 | Started server process [3949]
INFO: Started server process [13352]
2022-03-26 22:45:30,838 | INFO | server.py | serve | 75 | Started server process [13352]
INFO: Waiting for application startup.
2022-03-07 17:39:14,865 | INFO | on.py | startup | 45 | Waiting for application startup.
2022-03-26 22:45:30,839 | INFO | on.py | startup | 45 | Waiting for application startup.
INFO: Application startup complete.
2022-03-07 17:39:14,866 | INFO | on.py | startup | 59 | Application startup complete.
2022-03-26 22:45:30,839 | INFO | on.py | startup | 59 | Application startup complete.
INFO: Uvicorn running on http://0.0.0.0:8002 (Press CTRL+C to quit)
2022-03-07 17:39:14,867 | INFO | server.py | _log_started_message | 206 | Uvicorn running on http://0.0.0.0:8002 (Press CTRL+C to quit)
2022-03-26 22:45:30,840 | INFO | server.py | _log_started_message | 206 | Uvicorn running on http://0.0.0.0:8002 (Press CTRL+C to quit)
```

### 3. 测试方法
### 4. 测试方法
- 准备数据
```bash
wget -c https://www.openslr.org/resources/82/cn-celeb_v2.tar.gz && tar -xvf cn-celeb_v2.tar.gz
Expand All @@ -110,40 +115,88 @@ ffce340b3790 minio/minio:RELEASE.2020-12-03T00-03-10Z "/usr/bin/docker-ent…"

输出:
```bash
Checkpoint path: %your model path%
Downloading https://paddlespeech.bj.bcebos.com/vector/audio/example_audio.tar.gz ...
...
Unpacking ./example_audio.tar.gz ...
[2022-03-26 22:50:54,987] [ INFO] - checking the aduio file format......
[2022-03-26 22:50:54,987] [ INFO] - The sample rate is 16000
[2022-03-26 22:50:54,987] [ INFO] - The audio file format is right
[2022-03-26 22:50:54,988] [ INFO] - device type: cpu
[2022-03-26 22:50:54,988] [ INFO] - load the pretrained model: ecapatdnn_voxceleb12-16k
[2022-03-26 22:50:54,990] [ INFO] - Downloading sv0_ecapa_tdnn_voxceleb12_ckpt_0_1_0.tar.gz from https://paddlespeech.bj.bcebos.com/vector/voxceleb/sv0_ecapa_tdnn_voxceleb12_ckpt_0_1_0.tar.gz
...
[2022-03-26 22:51:17,285] [ INFO] - start to dynamic import the model class
[2022-03-26 22:51:17,285] [ INFO] - model name ecapatdnn
[2022-03-26 22:51:23,864] [ INFO] - start to set the model parameters to model
[2022-03-26 22:54:08,115] [ INFO] - create the model instance success
[2022-03-26 22:54:08,116] [ INFO] - Preprocess audio file: /home/zhaoqingen/PaddleSpeech/demos/audio_
searching/example_audio/knife_hit_iron3.wav
[2022-03-26 22:54:08,116] [ INFO] - load the audio sample points, shape is: (11012,)
[2022-03-26 22:54:08,150] [ INFO] - extract the audio feat, shape is: (80, 69)
[2022-03-26 22:54:08,152] [ INFO] - feats shape: [1, 80, 69]
[2022-03-26 22:54:08,154] [ INFO] - audio extract the feat success
[2022-03-26 22:54:08,155] [ INFO] - start to do backbone network model forward
[2022-03-26 22:54:08,155] [ INFO] - feats shape:[1, 80, 69], lengths shape: [1]
[2022-03-26 22:54:08,433] [ INFO] - embedding size: (192,)
Extracting feature from audio No. 1 , 20 audios in total
[2022-03-26 22:54:08,435] [ INFO] - checking the aduio file format......
[2022-03-26 22:54:08,435] [ INFO] - The sample rate is 16000
[2022-03-26 22:54:08,436] [ INFO] - The audio file format is right
[2022-03-26 22:54:08,436] [ INFO] - device type: cpu
[2022-03-26 22:54:08,436] [ INFO] - Model has been initialized
[2022-03-26 22:54:08,436] [ INFO] - Preprocess audio file: /home/zhaoqingen/PaddleSpeech/demos/audio_searching/example_audio/sword_wielding.wav
[2022-03-26 22:54:08,436] [ INFO] - load the audio sample points, shape is: (6391,)
[2022-03-26 22:54:08,452] [ INFO] - extract the audio feat, shape is: (80, 40)
[2022-03-26 22:54:08,454] [ INFO] - feats shape: [1, 80, 40]
[2022-03-26 22:54:08,454] [ INFO] - audio extract the feat success
[2022-03-26 22:54:08,454] [ INFO] - start to do backbone network model forward
[2022-03-26 22:54:08,455] [ INFO] - feats shape:[1, 80, 40], lengths shape: [1]
[2022-03-26 22:54:08,633] [ INFO] - embedding size: (192,)
Extracting feature from audio No. 2 , 20 audios in total
...
2022-03-09 17:22:13,870 | INFO | main.py | load_audios | 85 | Successfully loaded data, total count: 20
2022-03-09 17:22:13,898 | INFO | main.py | count_audio | 147 | Successfully count the number of data!
2022-03-09 17:22:13,918 | INFO | main.py | audio_path | 57 | Successfully load audio: ./example_audio/test.wav
2022-03-26 22:54:15,892 | INFO | main.py | load_audios | 85 | Successfully loaded data, total count: 20
2022-03-26 22:54:15,908 | INFO | main.py | count_audio | 148 | Successfully count the number of data!
[2022-03-26 22:54:15,916] [ INFO] - checking the aduio file format......
[2022-03-26 22:54:15,916] [ INFO] - The sample rate is 16000
[2022-03-26 22:54:15,916] [ INFO] - The audio file format is right
[2022-03-26 22:54:15,916] [ INFO] - device type: cpu
[2022-03-26 22:54:15,916] [ INFO] - Model has been initialized
[2022-03-26 22:54:15,916] [ INFO] - Preprocess audio file: /home/zhaoqingen/PaddleSpeech/demos/audio_searching/example_audio/test.wav
[2022-03-26 22:54:15,917] [ INFO] - load the audio sample points, shape is: (8456,)
[2022-03-26 22:54:15,923] [ INFO] - extract the audio feat, shape is: (80, 53)
[2022-03-26 22:54:15,924] [ INFO] - feats shape: [1, 80, 53]
[2022-03-26 22:54:15,924] [ INFO] - audio extract the feat success
[2022-03-26 22:54:15,924] [ INFO] - start to do backbone network model forward
[2022-03-26 22:54:15,924] [ INFO] - feats shape:[1, 80, 53], lengths shape: [1]
[2022-03-26 22:54:16,051] [ INFO] - embedding size: (192,)
...
2022-03-09 17:22:32,580 | INFO | main.py | search_local_audio | 131 | search result http://testserver/data?audio_path=./example_audio/test.wav, distance 0.0
2022-03-09 17:22:32,580 | INFO | main.py | search_local_audio | 131 | search result http://testserver/data?audio_path=./example_audio/knife_chopping.wav, distance 0.021805256605148315
2022-03-09 17:22:32,580 | INFO | main.py | search_local_audio | 131 | search result http://testserver/data?audio_path=./example_audio/knife_cut_into_flesh.wav, distance 0.052762262523174286
2022-03-26 22:54:16,086 | INFO | main.py | search_local_audio | 132 | search result http://testserver/data?audio_path=./example_audio/test.wav, score 100.0
2022-03-26 22:54:16,087 | INFO | main.py | search_local_audio | 132 | search result http://testserver/data?audio_path=./example_audio/knife_chopping.wav, score 29.182177782058716
2022-03-26 22:54:16,087 | INFO | main.py | search_local_audio | 132 | search result http://testserver/data?audio_path=./example_audio/knife_cut_into_body.wav, score 22.73637056350708
...
2022-03-09 17:22:32,582 | INFO | main.py | search_local_audio | 135 | Successfully searched similar audio!
2022-03-09 17:22:33,658 | INFO | main.py | drop_tables | 159 | Successfully drop tables in Milvus and MySQL!
2022-03-26 22:54:16,088 | INFO | main.py | search_local_audio | 136 | Successfully searched similar audio!
2022-03-26 22:54:17,164 | INFO | main.py | drop_tables | 160 | Successfully drop tables in Milvus and MySQL!
```

- 前端测试(可选)

在浏览器中输入 127.0.0.1:8068 访问前端页面

注:如果浏览器和服务不在同一台机器上,那么 IP 需要修改成服务所在的机器 IP,并且 docker-compose.yaml 中相应的 API_URL 也要修改,并重新起服务即可
注:如果浏览器和服务不在同一台机器上,那么 IP 需要修改成服务所在的机器 IP,并且 docker-compose.yaml 中相应的 API_URL 也要修改,然后重新执行 docker-compose.yaml 文件,使修改生效。

- 上传音频

下载数据并解压到一文件夹,假设为 /home/speech/data,那么在上传页面地址栏输入 /home/speech/data 进行数据上传
在服务端下载数据并解压到一文件夹,假设为 /home/speech/data/,那么在上传页面地址栏输入 /home/speech/data/ 进行数据上传

![](./img/insert.png)

- 检索相似音频

选择左上角放大镜,点击 “Default Target Audio File” 按钮,上传测试音频,接着你将看到检索结果
选择左上角放大镜,点击 “Default Target Audio File” 按钮,从客户端上传测试音频,接着你将看到检索结果

![](./img/search.png)

### 4. 结果
### 5. 结果

机器配置:
- 操作系统: CentOS release 7.6
Expand All @@ -158,9 +211,9 @@ ffce340b3790 minio/minio:RELEASE.2020-12-03T00-03-10Z "/usr/bin/docker-ent…"

![](./img/result.png)

基于 Milvus 的检索框架在召回率 90% 的前提下,检索耗时约 2.9 毫秒,加上特征提取(Embedding)耗时约 500毫秒(测试音频时长约 5秒),即单条音频测试总共耗时约 503 毫秒,可以满足大多数应用场景
基于 Milvus 的检索框架在召回率 90% 的前提下,检索耗时约 2.9 毫秒,加上特征提取(Embedding)耗时约 500 毫秒(测试音频时长约 5 秒),即单条音频测试总共耗时约 503 毫秒,可以满足大多数应用场景

### 5. 预训练模型
### 6. 预训练模型

以下是 PaddleSpeech 提供的预训练模型列表:

Expand Down
Binary file modified demos/audio_searching/img/search.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
3 changes: 2 additions & 1 deletion demos/audio_searching/requirements.txt
Original file line number Diff line number Diff line change
@@ -1,7 +1,8 @@
diskcache==5.2.1
dtaidistance==2.3.1
fastapi
librosa==0.8.0
numpy
numpy==1.21.0
pydantic
pymilvus==2.0.1
pymysql
Expand Down
2 changes: 1 addition & 1 deletion demos/audio_searching/src/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@
############### Milvus Configuration ###############
MILVUS_HOST = os.getenv("MILVUS_HOST", "127.0.0.1")
MILVUS_PORT = int(os.getenv("MILVUS_PORT", "19530"))
VECTOR_DIMENSION = int(os.getenv("VECTOR_DIMENSION", "2048"))
VECTOR_DIMENSION = int(os.getenv("VECTOR_DIMENSION", "192"))
INDEX_FILE_SIZE = int(os.getenv("INDEX_FILE_SIZE", "1024"))
METRIC_TYPE = os.getenv("METRIC_TYPE", "L2")
DEFAULT_TABLE = os.getenv("DEFAULT_TABLE", "audio_table")
Expand Down
16 changes: 7 additions & 9 deletions demos/audio_searching/src/encode.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,24 +15,22 @@

import librosa
import numpy as np
from config import DEFAULT_TABLE

from logs import LOGGER
from paddlespeech.cli import VectorExecutor

vector_executor = VectorExecutor()


def get_audio_embedding(path):
"""
Use vpr_inference to generate embedding of audio
"""
try:
RESAMPLE_RATE = 16000
audio, _ = librosa.load(path, sr=RESAMPLE_RATE, mono=True)

# TODO add infer/python interface to get embedding, now fake it by rand
# vpr = ECAPATDNN(checkpoint_path=None, device='cuda')
# embedding = vpr.inference(audio)
np.random.seed(hash(os.path.basename(path)) % 1000000)
embedding = np.random.rand(1, 2048)
embedding = vector_executor(audio_file=path)
embedding = embedding / np.linalg.norm(embedding)
embedding = embedding.tolist()[0]
embedding = embedding.tolist()
return embedding
except Exception as e:
LOGGER.error(f"Error with embedding:{e}")
Expand Down
16 changes: 8 additions & 8 deletions demos/audio_searching/src/test_main.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,24 +11,24 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import zipfile

import gdown
from fastapi.testclient import TestClient
from main import app

from utils.utility import download
from utils.utility import unpack

client = TestClient(app)


def download_audio_data():
"""
download audio data
"""
url = 'https://drive.google.com/uc?id=1bKu21JWBfcZBuEuzFEvPoAX6PmRrgnUp'
gdown.download(url)

with zipfile.ZipFile('example_audio.zip', 'r') as zip_ref:
zip_ref.extractall('./example_audio')
url = "https://paddlespeech.bj.bcebos.com/vector/audio/example_audio.tar.gz"
md5sum = "52ac69316c1aa1fdef84da7dd2c67b39"
target_dir = "./"
filepath = download(url, md5sum, target_dir)
unpack(filepath, target_dir, True)


def test_drop():
Expand Down

0 comments on commit 500080a

Please sign in to comment.