-
Notifications
You must be signed in to change notification settings - Fork 3k
动转静代码片段
骑马小猫 edited this page Oct 25, 2022
·
1 revision
动转静之后可以最大程度上提升模型的运行速度,以下为不同模型的动转静的代码片段。
import paddlenlp as ppnlp
model = ppnlp.transformers.LayoutXLMForTokenClassification.from_pretrained("layoutlmv2-base-uncased")
model.eval()
model = paddle.jit.to_static(
model,
input_spec=[
paddle.static.InputSpec(
shape=[None, 512], dtype="int64"), # input_ids
paddle.static.InputSpec(
shape=[None, 512, 4], dtype="int64"), # bbox
paddle.static.InputSpec(
shape=[None, 3, 224, 224], dtype="int64"), # image
paddle.static.InputSpec(
shape=[None, 512], dtype="int64"), # attention_mask
])
# Save in static graph model.
save_path = os.path.join(args.output_path, "inference")
paddle.jit.save(model,'layoutlmv2')
import paddlenlp as ppnlp
model = ppnlp.transformers.LayoutXLMForTokenClassification.from_pretrained("layoutxlm-base-uncased")
model.eval()
model = paddle.jit.to_static(
model,
input_spec=[
paddle.static.InputSpec(
shape=[None, 512], dtype="int64"), # input_ids
paddle.static.InputSpec(
shape=[None, 512, 4], dtype="int64"), # bbox
paddle.static.InputSpec(
shape=[None, 3, 224, 224], dtype="int64"), # image
paddle.static.InputSpec(
shape=[None, 512], dtype="int64"), # attention_mask
])
# Save in static graph model.
save_path = os.path.join(args.output_path, "inference")
paddle.jit.save(model, 'layoutxlm')