Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add pir_model path for server infer. #9790

Merged
merged 1 commit into from
Jan 17, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
29 changes: 7 additions & 22 deletions llm/server/server/server/engine/infer.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@
import paddle
import paddle.distributed as dist
import paddle.distributed.fleet as fleet
from paddle.base.framework import use_pir_api
from paddlenlp.trl.llm_utils import get_rotary_position_embedding
from paddlenlp_ops import step_paddle
from server.data.processor import DataProcessor
Expand Down Expand Up @@ -467,32 +468,16 @@ def _init_predictor(self):
predictor init
"""
device_id = self.rank % 8
self.model_file = os.path.join(self.model_dir, f"model.pdmodel")
self.param_file = os.path.join(self.model_dir, f"model.pdiparams")
if use_pir_api():
self.model_file = os.path.join(self.model_dir, f"model.json")
self.param_file = os.path.join(self.model_dir, f"model.pdiparams")
else:
self.model_file = os.path.join(self.model_dir, f"model.pdmodel")
self.param_file = os.path.join(self.model_dir, f"model.pdiparams")
config = paddle.inference.Config(self.model_file, self.param_file)

config.switch_ir_optim(False)
config.enable_use_gpu(100, device_id)

# distributed config
if self.mp_degree > 1:
trainer_endpoints = fleet.worker_endpoints()
current_endpoint = trainer_endpoints[self.rank]
dist_config = config.dist_config()
dist_config.set_ranks(self.nranks, self.rank)
dist_config.set_endpoints(trainer_endpoints, current_endpoint)
dist_config.enable_dist_model(True)
if self.config.distributed_config_path:
dist_config.set_comm_init_config(self.config.distributed_config_path)
else:
raise Exception("Please set DISTRIBUTED_CONFIG env variable.")
logger.warning(
f"Use default distributed config, please set env DISTRIBUTED_CONFIG"
)
dist_config.set_comm_init_config(
os.path.join(Dir_Path + "/config", "rank_mapping_mp{}.csv".format(self.nranks)))

config.set_dist_config(dist_config)
self.predictor = paddle.inference.create_predictor(config)
self.input_names = self.predictor.get_input_names()
self.seq_lens_handle = self.predictor.get_input_handle('seq_lens_this_time')
Expand Down