Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding LoKrModel Class to paddle.peft library #9269

Merged
merged 16 commits into from
Nov 27, 2024
34 changes: 34 additions & 0 deletions llm/config/llama/lokr_argument.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
{
"model_name_or_path": "meta-llama/Meta-Llama-3-8B",
"dataset_name_or_path": "./data",
"output_dir": "./checkpoints/lokr_ckpts",
"lokr": true,
Copy link
Contributor

@lugimzzz lugimzzz Nov 1, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

1.代码还未在https://github.com/PaddlePaddle/PaddleNLP/blob/develop/llm/run_finetune.py 文件中添加相应的代码,没有看到lokr设为true时执行的逻辑。
2.添加后请相应同步文档,lokr运行方式以及对应新增参数的解释https://github.com/PaddlePaddle/PaddleNLP/blob/develop/llm/docs/finetune.md
3.模仿lora添加llm单测 https://github.com/PaddlePaddle/PaddleNLP/blob/develop/tests/llm/test_lora.py
4.请参考vera和lora的脚本新增一个 merge_lokr_params.py https://github.com/PaddlePaddle/PaddleNLP/blob/develop/llm/tools/merge_vera_params.py

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

再次感谢对开源代码的贡献,代码库中LoKr算法实现没有问题,补充完大模型应用样例即可合入PaddleNLP

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

好的,收到!争取这周末完成上述四点,到时候我在远程仓库提交

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

all done~

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

完成

"per_device_train_batch_size": 4,
"gradient_accumulation_steps": 4,
"num_train_epochs": 1,
"learning_rate": 2e-05,
"lr_scheduler_type": "linear",
"attention_probs_dropout_prob": 0,
"hidden_dropout_prob": 0,
"warmup_steps": 30,
"logging_steps": 1,
"evaluation_strategy": "no",
"save_strategy": "steps",
"save_steps": 500,
"src_length": 512,
"max_length": 512,
"bf16": true,
"do_train": true,
"do_eval": false,
"disable_tqdm": false,
"load_best_model_at_end": false,
"eval_with_do_generation": false,
"metric_for_best_model": "accuracy",
"recompute": false,
"save_total_limit": 100,
"fp16_opt_level": "O2",
"sharding": "stage2",
"zero_padding": false,
"use_flash_attention": false,
"unified_checkpoint": true
}
2 changes: 2 additions & 0 deletions llm/docs/finetune.md
Original file line number Diff line number Diff line change
Expand Up @@ -130,6 +130,8 @@ python merge_lora_params.py \
- `neftune_noise_alpha`: NEFT alpha 参数,默认为5.0。
- `vera`: 是否开启 VeRA 微调策略,默认为 False。
- `vera_rank`: VeRA 算法中 rank(秩)的值,默认为8。
- `lokr`: 是否开启 LoKr 微调策略,默认为 False。
- `lokr_rank`: LoKr 算法中 rank(秩)的值,默认为8。
- `use_long_sequence_strategies`: 是否使用长序列扩展策略,默认为 False。
- `strategy_type`: 长序列扩展策略的类型,默认为 None。
- `strategy_name`: 长序列扩展策略的具体名称,默认为 None。
Expand Down
17 changes: 17 additions & 0 deletions llm/run_finetune.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,8 @@
)
from paddlenlp.metrics import BLEU, Rouge1, Rouge2, RougeL
from paddlenlp.peft import (
LoKrConfig,
LoKrModel,
LoRAConfig,
LoRAModel,
PrefixConfig,
Expand Down Expand Up @@ -446,6 +448,21 @@ def neft_post_hook(module, input, output):

model.print_trainable_parameters()

if model_args.lokr:
if model_args.lokr_path is None:
target_modules = get_lora_target_modules(model)
lokr_config = LoKrConfig(
target_modules=target_modules,
lokr_dim=model_args.lokr_dim,
dtype=dtype,
base_model_name_or_path=model_args.model_name_or_path,
)
model = LoKrModel(model, lokr_config)
else:
model = LoKrModel.from_pretrained(model=model, lokr_path=model_args.lokr_path)

# For debugging purpose, you can print the model to see which layer is transformed into a lokr layer
# print(model)
if model_args.reft:
intervention_dtype = dtype
intervention_params = {
Expand Down
116 changes: 116 additions & 0 deletions llm/tools/merge_lokr_params.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,116 @@
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os

import paddle

from paddlenlp.peft import LoKrConfig, LoKrModel
from paddlenlp.transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
from paddlenlp.utils.env import CONFIG_NAME


def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument("--model_name_or_path", default=None, help="The directory of pretrained model.")
parser.add_argument("--lokr_path", default="", help="The directory of lokr parameters. Default to None")
parser.add_argument(
"--merge_lokr_model_path",
default="",
help="The directory of merged parameters. Default to None",
)
parser.add_argument("--device", type=str, default="gpu", help="Device")
parser.add_argument(
"--low_gpu_mem", type=bool, default=True, help="Whether to use low gpu memory. Default to False"
)
return parser.parse_args()


def weight_process(name, lokr_config, state_dict):
weight = state_dict.pop(name + ".weight")
use_w1 = True if ((name + ".lokr_w1") in state_dict) else False
use_w2 = True if ((name + ".lokr_w2") in state_dict) else False
if use_w1:
lokr_w1 = state_dict.pop(name + ".lokr_w1")
else:
lokr_w1_a = state_dict.pop(name + ".lokr_w1_a")
lokr_w1_b = state_dict.pop(name + ".lokr_w1_b")
if use_w2:
lokr_w2 = state_dict.pop(name + ".lokr_w2")
else:
lokr_w2_a = state_dict.pop(name + ".lokr_w2_a")
lokr_w2_b = state_dict.pop(name + ".lokr_w2_b")

scaling = lokr_config.lokr_alpha / lokr_config.lokr_dim

adapter_weight = (
scaling
* paddle.kron(lokr_w1 if use_w1 else lokr_w1_a @ lokr_w1_b, lokr_w2 if use_w2 else lokr_w2_a @ lokr_w2_b).T
)
state_dict[name + ".weight"] = weight + adapter_weight


def merge():
args = parse_arguments()
paddle.set_device(args.device)

lokr_config = LoKrConfig.from_pretrained(args.lokr_path)
if lokr_config.base_model_name_or_path is None:
if args.model_name_or_path is not None:
raise ValueError("We can not find a valid model_name_or_path.")
else:
lokr_config.base_model_name_or_path = args.model_name_or_path

if os.path.isfile(os.path.join(args.lokr_path, CONFIG_NAME)):
config = AutoConfig.from_pretrained(args.lokr_path)
elif args.model_name_or_path is not None:
config = AutoConfig.from_pretrained(args.model_name_or_path)
else:
raise ValueError(
f"We can not find config.json in lokr_path: {args.lokr_path} or find a valid model_name_or_path."
)
config.dtype = lokr_config.dtype
if (
lokr_config.dtype == "bfloat16" or config.quantization_config.weight_quantize_algo in ["nf4", "fp4"]
) and args.device == "cpu":
raise ValueError("We can not apply bfloat16 or nf4/fp4 lokr merge on cpu.")

# with device_guard() will cause SVD decomposition to fail
model = AutoModelForCausalLM.from_pretrained(
lokr_config.base_model_name_or_path,
config=config,
low_cpu_mem_usage=True,
)
model = LoKrModel.from_pretrained(model=model, lokr_path=args.lokr_path, lokr_config=lokr_config)

model.eval()
model_state_dict = model.model.state_dict()
lokr_name_list = []

for key in model_state_dict.keys():
if "lokr" in key:
lokr_name_list.append(key.split(".lokr")[0])

lokr_name_list = list(set(lokr_name_list))
for name in lokr_name_list:
weight_process(name, lokr_config, model_state_dict)

model.model.save_pretrained(args.merge_lokr_model_path, state_dict=model_state_dict)
tokenizer = AutoTokenizer.from_pretrained(lokr_config.base_model_name_or_path)
tokenizer.save_pretrained(args.merge_lokr_model_path)


if __name__ == "__main__":
merge()
7 changes: 7 additions & 0 deletions llm/utils/argument.py
Original file line number Diff line number Diff line change
Expand Up @@ -223,6 +223,13 @@ class ModelArgument:
vera: bool = field(default=False, metadata={"help": "Whether to use vera technique"})
vera_rank: int = field(default=8, metadata={"help": "Vera attention dimension"})

# lokr related parameter
lokr: bool = field(default=False, metadata={"help": "Whether to use LoKr technique"})
lokr_path: str = field(
default=None, metadata={"help": "Initialize lokr state dict and apply customized lokr config"}
)
lokr_dim: int = field(default=8, metadata={"help": "Lora dimention in LoKr dimension for adapter matrix"})

# prefix tuning related parameters
prefix_tuning: bool = field(default=False, metadata={"help": "Whether to use Prefix technique"})
prefix_path: str = field(default=None, metadata={"help": "Initialize prefix state dict."})
Expand Down
2 changes: 1 addition & 1 deletion paddlenlp/peft/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.


from .lokr import LoKrConfig, LoKrModel
from .lora import LoRAConfig, LoRAModel
from .prefix import PrefixConfig, PrefixModelForCausalLM
from .reft import ReFTModel
Expand Down
19 changes: 19 additions & 0 deletions paddlenlp/peft/lokr/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .lokr_config import LoKrConfig
from .lokr_layers import LoKrLinear
from .lokr_model import LoKrModel

__all__ = ["LoKrConfig", "LoKrModel", "LoKrLinear"]
141 changes: 141 additions & 0 deletions paddlenlp/peft/lokr/lokr_config.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,141 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os
from dataclasses import asdict, dataclass, field
from typing import List, Optional, Union

from ...utils.env import LOKR_CONFIG_NAME


@dataclass
class LoKrConfig:
"""
This is the configuration class to store the configuration of a [`LoKrModel`].
Convention of LoKrModel: W1 can be named as scaling matrix, W2 can be named as adapter matrix.
Args:
target_modules (`Union[List[str],str]`): The names of the modules to apply Lora to.
trainable_modules (`List[str]`): The names of the modules to train when applying Lora.
lokr_alpha (`float`): The alpha parameter for Lora scaling.
merge_weights (`bool`):
Whether to merge the weights of the Lora layers with the base transformer model in `eval` mode.
"""

base_model_name_or_path: Optional[str] = field(
default=None, metadata={"help": "The name of the base model to use."}
)
target_modules: Optional[Union[List[str], str]] = field(
default=None,
metadata={
"help": "List of module names or regex expression of the module names to replace with LoKr."
"For example, ['q', 'v'] or '.*decoder.*(SelfAttention|EncDecAttention).*(q|v)$' "
},
)
trainable_modules: Optional[List[str]] = field(
default=None,
metadata={
"help": "List of module names or regex expression of the module names to train when applying with LoKr."
"For example, ['q', 'v'] or '.*decoder.*(SelfAttention|EncDecAttention).*(q|v)$' "
},
)
trainable_bias: Optional[str] = field(
default=None, metadata={"help": "Define trainable bias parameters for the Lora model."}
)
lokr_dim: int = field(default=8, metadata={"help": "Lora dimention in LoKr dimension, for adapter matrix"})
factor: int = field(default=-1, metadata={"help": "Determine the decomposition size of LoKr matrices"})
decompose_both: bool = field(
default=False,
metadata={"help": "Determine whether to decomposed both Scaling Matrix and adapter matrix together"},
)
lokr_alpha: float = field(
default=0.0, metadata={"help": "Determine the scaling of adapter weight, follow lokr convention"}
)
merge_weight: bool = field(
default=False, metadata={"help": "Merge weights of the original model and the Lokr model"}
)
tensor_parallel_degree: int = field(default=-1, metadata={"help": "-1 for not use tensor parallel"})
dtype: Optional[str] = field(default=None, metadata={"help": "The data type of tensor"})

@property
def __dict__(self):
return asdict(self)

def to_dict(self):
return self.__dict__

@property
def scaling(self):
if not (self.lokr_alpha or self.lokr_dim):
return 1.0
return self.lokr_alpha / self.lokr_dim

def save_pretrained(self, save_directory):
r"""
This method saves the configuration of your adapter model in a directory.
Args:
save_directory (`str`):
The directory where the configuration will be saved.
"""
if os.path.isfile(save_directory):
raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")

os.makedirs(save_directory, exist_ok=True)

output_dict = self.__dict__
output_dict["scaling"] = self.scaling
output_path = os.path.join(save_directory, LOKR_CONFIG_NAME)

# save it
with open(output_path, "w") as writer:
writer.write(json.dumps(output_dict, indent=2, sort_keys=True))

@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
r"""
This method loads the configuration of your adapter model from a directory.
Args:
pretrained_model_name_or_path (`str`):
The directory or the hub-id where the configuration is saved.
**kwargs:
Additional keyword arguments passed along to the child class initialization.
"""
if os.path.isfile(os.path.join(pretrained_model_name_or_path, LOKR_CONFIG_NAME)):
config_file = os.path.join(pretrained_model_name_or_path, LOKR_CONFIG_NAME)
else:
raise ValueError(f"Can't find lokr_config.json at '{pretrained_model_name_or_path}'")

loaded_attributes = cls.from_json_file(config_file)
loaded_attributes.pop("scaling", None)

config = cls(**kwargs)

for key, value in loaded_attributes.items():
if hasattr(config, key):
setattr(config, key, value)

return config

@classmethod
def from_json_file(cls, path_json_file):
r"""
Loads a configuration file from a json file.
Args:
path_json_file (`str`):
The path to the json file.
"""
with open(path_json_file, "r") as file:
json_object = json.load(file)

return json_object
Loading