Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix pir dtype #9130

Merged
merged 1 commit into from
Sep 13, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 9 additions & 3 deletions legacy/model_zoo/moe/dygraph/run_moe_pretrain.py
Original file line number Diff line number Diff line change
Expand Up @@ -158,27 +158,33 @@ def initialize_mp_dp_parameters(model, hcg):
def unscale_method(self, optimizer):
if not self._enable:
return
if paddle.framework.use_pir_api():
type_float16 = core.DataType.FLOAT16
type_float32 = core.DataType.FLOAT32
else:
type_float16 = core.VarDesc.VarType.FP16
type_float32 = core.VarDesc.VarType.FP32

if getattr(optimizer, "_param_groups", None) and isinstance(optimizer._param_groups[0], dict):
param_grads_fp16 = []
param_grads_fp32 = []
for group in optimizer._param_groups:
for param in group["params"]:
if param._grad_ivar() is not None:
if param._grad_ivar().dtype == core.VarDesc.VarType.FP16:
if param._grad_ivar().dtype == type_float16:
param_grads_fp16.append(param._grad_ivar())
else:
param_grads_fp32.append(param._grad_ivar())
else:
param_grads_fp16 = [
param._grad_ivar()
for param in optimizer._parameter_list
if (param._grad_ivar() is not None) and (param._grad_ivar().dtype == core.VarDesc.VarType.FP16)
if (param._grad_ivar() is not None) and (param._grad_ivar().dtype == type_float16)
]
param_grads_fp32 = [
param._grad_ivar()
for param in optimizer._parameter_list
if (param._grad_ivar() is not None) and (param._grad_ivar().dtype == core.VarDesc.VarType.FP32)
if (param._grad_ivar() is not None) and (param._grad_ivar().dtype == type_float32)
]
temp_found_inf_fp16 = paddle.to_tensor(np.array([0]).astype(np.bool_))
temp_found_inf_fp32 = paddle.to_tensor(np.array([0]).astype(np.bool_))
Expand Down
Loading